
Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18

Final Report

W911NF-13-1-0219

63295-CS-ACI.9

310-508-4118

a. REPORT

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

The University of Southern California (USC), the Lawrence Livermore National Laboratory (LLNL), and the Jet
Propulsion Laboratory (JPL) believe that a new generation of dependable applications must be developed to
successfully exploit this next generation of technology. Such applications and the systems they run on must be
introspective and adaptive, actively searching for errors in their program state with hardware mechanisms and new
software techniques. Towards this end,we have developed and demonstrating the technology to enable adaptive,
application-oriented control of fault tolerance, for a set of scientific applications on a workstation-class system by

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

15. SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17. LIMITATION OF
ABSTRACT

15. NUMBER
OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

Approved for Public Release; Distribution Unlimited

UU UU UU UU

30-06-2016 5-Aug-2013 4-Apr-2016

Final Report: FAIL-SAFE: Fault Aware IntelLigent SoftwAre
For Exascale

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

Resilience, Exascale, Software Directives, Program Analysis and Transformations, Introspection,

REPORT DOCUMENTATION PAGE

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)
 ARO

8. PERFORMING ORGANIZATION REPORT
NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER
Robert Lucas

Robert F. Lucas

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

University of Southern California
Department of Contracts and Grants
3720 South Flower Street
Los Angeles, CA 90089 -0701

ABSTRACT

Number of Papers published in peer-reviewed journals:

Final Report: FAIL-SAFE: Fault Aware IntelLigent SoftwAre For Exascale

Report Title

The University of Southern California (USC), the Lawrence Livermore National Laboratory (LLNL), and the Jet Propulsion Laboratory
(JPL) believe that a new generation of dependable applications must be developed to successfully exploit this next generation of technology.
Such applications and the systems they run on must be introspective and adaptive, actively searching for errors in their program state with
hardware mechanisms and new software techniques. Towards this end,we have developed and demonstrating the technology to enable
adaptive, application-oriented control of fault tolerance, for a set of scientific applications on a workstation-class system by injecting
memory faults and observing the survivability of the applications.

We have defined an assertion language that provides programmer with a convenient interface to specific the resilient characteristics of
applications and have implemented a limited set of these assertions as source-to-source transformations in the ROSE-compiler infrastructure.
The outcomes of this research provide a model for the vendors of Defense systems, and a prototype capability should the vendors chose not
to bring such technology to market. The increased application resilience resulting from this research will lead to faster completion of
Defense applications, and thus substantial energy savings as well as increased mission assurance.

(a) Papers published in peer-reviewed journals (N/A for none)

Enter List of papers submitted or published that acknowledge ARO support from the start of
the project to the date of this printing. List the papers, including journal references, in the
following categories:

(b) Papers published in non-peer-reviewed journals (N/A for none)

Received Paper

TOTAL:

Received Paper

TOTAL:

Number of Papers published in non peer-reviewed journals:

6.00

1. FAIL-SAFE: Fault Aware IntelLigent SoftwAre For Exascale, Bob Lucas, Presentation at the Advanced Computing Initiative Kickoff,
June 2013

2.FAIL-SAFE: Fault Aware IntelLigent SoftwAre For Exascale, Bob Lucas, Poster Presentation PI Meeting, Feb, 2014

3.FAIL-SAFE: Fault Aware IntelLigent SoftwAre For Exascale, Bob Lucas, Poster Presentation PI Meeting, July, 2014

4. The FAIL-SAFE Assertion Language, Hans P. Zima, Jacqueline Chame, Pedro C. Diniz, Robert F. Lucas, Presentation at the Advanced
Computing Initiative Meeting, Marina del Rey, Sep. 2014.

5. Spacecraft Health Inference Engine (SHINE): A Tool for Building and Deploying Real-time Rule-based Reasoning Systems for
Detection, Diagnostics, Prognostics, Recovery, and Network Management, Mark James, 2015.

6. S. Hukerikar, P. Diniz, and R. Lucas, “Resilience for Exascale HPC Systems, A Programming Model Approach”, SIAM Conf. on
Parallel Processing for Scientific Computing, Feb. 2014, Portland, OR, USA

(c) Presentations

Number of Presentations:

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

06/29/2016

06/29/2016

Received Paper

5.00

6.00

. Enabling Application Resilience through Programming Model based Fault Amelioration,

Proc. of the IEEE High Performance Embedded Computing Conference. 10-SEP-57, Waltham, MA. : ,

. Pragma-controlled Source-to-Source Code Transformations for Robust Application Execution,

9th Workshop on Resiliency in High Performance Computing (Resilience) in Clusters, Clouds, and Grids
2016. 23-AUG-73, Grenoble, France. : ,

TOTAL: 2

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts):

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts):

Books

Number of Manuscripts:

(d) Manuscripts

06/30/2016

06/30/2016

Received Paper

2.00

3.00

Saurabh Hukerikar, Keita Teranishi, Pedro Diniz, Robert Lucas. Opportunistic Application-level Fault
Detection through Adaptive Redundant Multithreading,

HPCS 2014. 24-JUL-14, Bologna, Italy. : ,

Saurabh Hukerikar, Keita Teranishi, Pedro Diniz, Robert Lucas. An Evaluation of Lazy Fault Detection
based on Adaptive Redundant Multithreading,

HPEC 2014. 11-SEP-14, Waltham, MA. : ,

TOTAL: 2

Received Paper

TOTAL:

Received Book

TOTAL:

Patents Submitted

Patents Awarded

Awards

Graduate Students

Names of Post Doctorates

Names of Faculty Supported

Names of Under Graduate students supported

Received Book Chapter

TOTAL:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Discipline
Saurabh Hukerikar 1.00

1.00

1

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Names of Personnel receiving masters degrees

Names of personnel receiving PHDs

Names of other research staff

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):
Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for

Education, Research and Engineering:
The number of undergraduates funded by your agreement who graduated during this period and intend to work

for the Department of Defense
The number of undergraduates funded by your agreement who graduated during this period and will receive

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period:

0.00

0.00

0.00

0.00

0.00

0.00

0.00

The number of undergraduates funded by this agreement who graduated during this period with a degree in
science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue
to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:......

......

......

......

......

NAME

Total Number:

NAME

Total Number:
Saurabh Hukerikar

1

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

......

......

Sub Contractors (DD882)

Inventions (DD882)

Quantum Sciences and Technology Groue

Quantum Sciences and Technology Groue

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

Lawrence Livermore National Laboratory (LLNL) 7000 East Ave

Livermore CA 945509698

L-15140

Extended the ROSE compiler to parse ISI’s resilience directives and assertions.

12/14/14 12:00AM

2/29/16 12:00AM

Lawrence Livermore National Laboratory (LLNL) P. O. Box 808

Livermore CA 945500622

L-15140

Extended the ROSE compiler to parse ISI’s resilience directives and assertions.

12/14/14 12:00AM

2/29/16 12:00AM

NASA Jet Propulsion Laboratory

4800 Oak Grove Drive

Pasadana CA 91109

10142984

Used SHINE (Spacecraft Heath INference Engine) to generate rules for ISI’s resilience

12/14/14 12:00AM

2/29/16 12:00AM

NASA Jet Propulsion Laboratory

4800 Oak Grove Drive

Pasadana CA 91109

10142984

Used SHINE (Spacecraft Heath INference Engine) to generate rules for ISI’s resilience

12/14/14 12:00AM

2/29/16 12:00AM

1 a.

1 a.

1 a.

1 a.

Scientific Progress

Prior to FAIL-SAFE, we had already demonstrated that a knowledgeable user can assert what regions of a program’s state
space can tolerate errors, and that these programs can continue to correct solutions. To broaden the impact of this research,
we also needed to be able to ameliorate errors, with minimal overhead. Today, this is largely done by check-pointing state, and
then rolling back when errors are detected, and restarting the code. We demonstrated that one can extend a standard
programming API to allow a knowledgeable user to be able to provide alternative repair strategies that will reduce the frequency
of check-pointing and restarting, thus saving time and energy. What these are, and how broadly applicable they will be, remains
an open research question.

Today’s standard model of computation, embodied in familiar programming languages, assumes that the underlying computer
runs correctly. This model is generally accepted, except in safety critical systems like flight controls. In the near future, this will
no longer be true due to the continued scaling of VSLI. In addition it will be prohibitively expensive to enforce total operational
correctness with error correction using redundancy. The results of the research carried out in this project will be software that
exploits human knowledge of what faults are significant, and what are not, to reduce the overhead of maintaining the illusion of
perfect computing systems. This will save time and energy for large-scale Defense computations.

Technology Transfer

We have distributed drafts of our assertion language to two DOD ACS program investigators, Prof. Vivek Sarkar at Rice
University and Dr. David Bernholdt at Oak Ridge National Laboratory. Per the direction of John Daly, we also shared it with Erik
deBenedictis of Sandia National Laboratory and Marti Bancroft, a contractor for another DOD organization. We demonstrated
resilient execution of the HPCS Random Access benchmark at the DOD ACS workshop, July 17, 2014. We have also published
in the scientific literature, as enumerated below. Finally, we have installed at NSA R3 an up-to-date release of the ROSE
Compiler Infrastructure and an implementation of a selected set of the ROSE-based source-to-source transformations that
support the resilience directives developed as part of the FAI-SAFE language at a computer cluster at the direction of the
Government.

 1

FAIL SAFE: Fault Aware IntelLigent SoftwAre For Exascale
Final Report

	
June	13,	2016	

	
Award	number	W911NF-13-1-0219	

	
Robert	F.	Lucas	

Information	Sciences	Institute	
University	of	Southern	California	

(310)448-9449	
rflucas@isi.edu	

	
Introduction	
	
By	 the	 end	 of	 this	 decade,	 the	 Department	 of	 Defense	will	 be	 deploying	 large	 numbers	 of	massively	
parallel	 systems	 to	 address	 a	 broad	 set	 of	 problems	 ranging	 from	mission	 critical	 challenges	 such	 as	
cryptanalysis,	 image	 processing,	 decision	 support,	 and	 weather	 forecasting	 to	 fundamental	 research	
questions	 in	 science	 and	 technology.	 These	 high	 performance-computing	 systems	will	 be	 constructed	
from	exascale	technology.	As	such,	they	will	be	composed	of	devices	less	reliable	as	those	used	today,	
and	 faults	 will	 become	 the	 norm,	 not	 the	 exception.	 This	 will	 pose	 significant	 problems	 for	 Defense	
users,	who	for	half	a	century	have	enjoyed	an	execution	model	that	largely	relied	on	correct	behavior	by	
the	underlying	computing	system.		
	
The	University	of	Southern	California	(USC),	the	Lawrence	Livermore	National	Laboratory	(LLNL),	and	the	
Jet	 Propulsion	 Laboratory	 (JPL)	 believe	 that	 a	 new	 generation	 of	 dependable	 applications	 must	 be	
developed	to	successfully	exploit	this	next	generation	of	technology.	Such	applications	and	the	systems	
they	run	on	must	be	introspective	and	adaptive,	actively	searching	for	errors	in	their	program	state	with	
hardware	mechanisms	and	new	software	techniques.	Towards	this	end,	the	Army	Research	Office	(ARO)	
funded	us	via	contract	number	W911NF-13-1-0219	to	perform	research	with	the	goal	of	developing	and	
demonstrating	 the	 technology	 to	enable	adaptive,	 application-oriented	 control	of	 fault	 tolerance.	Our	
initial	plan	was	to	extend	the	ROSE	compiler,	the	LLVM	compiler,	and	the	SHINE	introspection	engine	so	
that	 faults	 injected	 into	 a	 resilient	 application’s	 state	 will	 be	 detected	 and	 dealt	 with,	 whether	 by	
ignoring	 them,	 correcting	 them	 if	 possible,	 or	 reverting	 to	 an	 earlier	 checkpoint	 when	 necessary.	 A	
reduction	in	scope	from	the	proposal	prevented	us	from	pursuing	the	work	with	LLVM.		
	
The	 report	 provides	 an	 overview	 of	 the	 results	 of	 this	 research.	 Further	 details	 can	 be	 found	 in	 the	
publications	 listed	below,	the	PhD	thesis	of	Dr.	Saurabh	Hukerikar,	and	software	that	was	delivered	to	
NSA’s	 R3.	 The	 remainder	 of	 this	 report	 is	 organized	 along	 the	 lines	 requested	 by	 ARO	 for	 previous	
reports.	
	
Objective	
	
In	 the	 FAIL-SAFE	 project,	 we	 extended	 the	 familiar	 C	 programming	 language	 to	 allow	 software	
developers	 to	 express	 their	 knowledge	 of	 the	 fault	 tolerance	 of	 their	 applications.	 The	 approach	
pursued,	 uses	 a	 high-level	 annotation	 language	 for	 expressing	 user	 knowledge	 about	 runtime	
correctness	conditions,	error	tolerance,	and	specific	methods	for	enhancing	reliability.	 	 	As	a	user-

 2

controlled	 approach,	 this	 approach	 avoids	 the	 performance	 and/or	 energy	 penalties	 associated	
with	 the	blind	 application	of	 traditional	 redundancy	methods	 such	 as	hardware/software	Triple-
Modular	 Redundancy	 (TMR).	We	 extended	 our	 initial	 resilience	 framework	 along	with	 the	 ROSE	
compiler	 and	 the	 SHINE	 introspection	 engine	 so	 that	 faults	 injected	 into	 a	 resilient	 application's	
state	 can	 be	 detected	 and	 dealt	 with,	 whether	 by	 ignoring	 them,	 correcting	 them	 if	 possible,	 or	
reverting	to	an	earlier	checkpoint	when	necessary.		The	results	of	this	research	provide	a	model	for	
the	vendors	of	Defense	systems,	and	a	prototype	capability	should	the	vendors	chose	not	to	bring	
such	 technology	 to	market.	 The	 increased	 application	 resilience	 resulting	 from	 this	 research	will	
lead	 to	 faster	 completion	 of	Defense	 applications,	 and	 thus	 substantial	 energy	 savings	 as	well	 as	
increased	mission	assurance.	
	
Approach	
	
At	the	beginning	of	the	FAIL-SAFE	project,	USC	has	an	existing	fault	tolerance	test	bed,	constructed	
with	prior	research	funding	that	demonstrates	that	some	uncorrectable	errors	can	be	ignored	and	
applications	 still	 continue	 to	 correct	 solutions.	 	 The	 FAIL-SAFE	 project	 created	 a	 major	
generalization	 of	 this	 system	by	 (1)	 developing	 a	 high-level	 annotation	 language;	 (2)	 automating	
the	 translation	 of	 directives	 in	 this	 high-level	 annotation	 language	 as	 source-to-source	 code	
transformations	 in	 the	DoE-funded	and	supported	ROSE	compiler	 infrastructure	 (3)	designing	an	
interface	between	the	application	and	an	introspection	framework	for	resilience	(IFR)	based	on	the	
inference	engine	SHINE;	(4)	using	the	ROSE	compiler	to	translate	annotations	into	reasoning	rules	
for	the	IFR;	and	(5)	designing	a	Knowledge/Experience	Database,	which	will	store	knowledge	about	
dynamic	 program	 behavior	 and	 resilience	 determined	 by	 the	 IFR	 to	 be	 leveraged	 in	 subsequent	
program	development	cycles.	We	implemented	this	this	technology	as	open-source	software	so	that	
Defense	users	have	access	to	it.		
	
Scientific	Barriers	
	
Prior	 to	 FAIL-SAFE,	 we	 had	 already	 demonstrated	 that	 a	 knowledgeable	 user	 can	 assert	 what	
regions	 of	 a	 program’s	 state	 space	 can	 tolerate	 errors,	 and	 that	 these	 programs	 can	 continue	 to	
correct	solutions.		To	broaden	the	impact	of	this	research,	we	also	needed	to	be	able	to	ameliorate	
errors,	with	minimal	overhead.		Today,	this	is	largely	done	by	check-pointing	state,	and	then	rolling	
back	when	errors	are	detected,	and	restarting	 the	code.	 	We	demonstrated	 that	one	can	extend	a	
standard	programming	API	to	allow	a	knowledgeable	user	to	be	able	to	provide	alternative	repair	
strategies	 that	 will	 reduce	 the	 frequency	 of	 check-pointing	 and	 restarting,	 thus	 saving	 time	 and	
energy.	 	 What	 these	 are,	 and	 how	 broadly	 applicable	 they	 will	 be,	 remains	 an	 open	 research	
question.	
	
Significance	
	
Today’s	 standard	model	 of	 computation,	 embodied	 in	 familiar	 programming	 languages,	 assumes	
that	 the	 underlying	 computer	 runs	 correctly.	 	 This	model	 is	 generally	 accepted,	 except	 in	 safety	
critical	 systems	 like	 flight	 controls.	 	 In	 the	 near	 future,	 this	 will	 no	 longer	 be	 true	 due	 to	 the	
continued	scaling	of	VSLI.	In	addition	it	will	be	prohibitively	expensive	to	enforce	total	operational	
correctness	with	error	correction	using	redundancy.		The	results	of	the	research	carried	out	in	this	
project	will	be	software	that	exploits	human	knowledge	of	what	faults	are	significant,	and	what	are	
not,	to	reduce	the	overhead	of	maintaining	the	illusion	of	perfect	computing	systems.		This	will	save	
time	and	energy	for	large-scale	Defense	computations.	
	
	 	

 3

Accomplishments	
	
The	FAIL-SAFE	project	was	initially	funded	in	August	of	2013.		Because	we	partnered	with	National	
laboratories	(LLNL	and	JPL),	in	took	months	to	get	them	on	contract.		In	fact,	due	to	inconsistencies	
between	the	FAR	and	the	Space	Act,	ARO	had	to	intervene	and	waive	some	clauses.	So,	in	a	very	real	
sense	the	FAIL-SAFE	team	only	came	together	in	early	2014.		
	
As	 first	 reported	 in	 August	 2014,	 the	 FAIL-SAFE	 team	 drafted	 an	 assertion	 language	 that	 allows	
users	to	communicate	fault	tolerance	knowledge	to	a	compiler	and	underlying	computing	systems.	
LLNL	has	extended	ROSE	to	parse	our	initial	assertion	language.		The	assertion	language	is	itself	a	
work	 in	progress,	 and	 this	was	an	ongoing	process	 throughout	 the	 remainder	of	 the	project.	The	
most	recent	version,	Version	8.0,	was	distributed	 in	August	of	2015,	after	we	began	collaborating	
with	 Dr.	 Erik	 DeBenedictis	 from	 Sandia	 National	 Laboratories	 (SNL)	 at	 the	 direction	 of	 the	
government.	 It	provided	 the	assertion	 language	support	 for	key	concepts	outlined	 in	Erik’s	white	
paper	entitled	“Managing	the	End	of	Moore’s	Law”.	It	is	included	as	an	appendix	to	this	report.	JPL	
also	 delivered	 to	 USC	 a	 first	 prototype	 of	 a	 SHINE-generated	 Introspection	 Framework	 for	
Resilience	(IFR).		This	has	been	tested	in	the	USC	resilience	test	bed,	running	on	USC’s	HPC	cluster	
and	was	demonstrated	at	the	July	2014	DOD	ACS	program	workshop.	 	Finally,	LLNL	implemented	
aspects	 of	 the	 assertion	 language	 in	 ROSE,	 software	 that	 has	 been	 delivered	 to	 NSA	 R3.	 These	
accomplishments	are	discussed	in	more	detail	below.	
	
	

	
	

Figure	1.	Application	compilation	and	fault-injection	infrastructure.	
	
Accomplishments:	Fault	Detection	and	Amelioration	
	
USC	developed	a	fault-injection	and	amelioration	analysis	infrastructure,	depicted	in	Figure	1	above.	
Using	 this	 infrastructure,	 we	 developed	 a	 set	 of	 computational	 kernels	 to	 be	 analyzed	 for	
robustness	 and	 refined	 the	 type	of	 failures	observed.	 Figure	2	below	depicts	 the	 impact	 of	 faults	
randomly	injected	into	two	computational	kernels.		The	injection	rate	varies	from	once	every	fifteen	
minutes,	 to	 once	 per	minute.	 The	 outcomes	 are:	 faults	 are	 detected	 and	 corrected;	 benign	 faults	
where	the	application	succeeds	even	though	faults	are	silent;	undetected	faults	leading	to	incorrect	
computational	 outcomes;	 and	 application	 crashes.	 The	 Graph	 500	 breadth-first-search	 algorithm	
contains	several	pointer-related	computations	to	traverse	the	graph	edges.	Therefore,	almost	50%	
of	 the	execution	 runs	 can	detect	 and		 correct	 the	 corruptions	 in	 the	pointer	arithmetic.	However,	
since	 the	 other	 parts	 of	 the	 computational	 environment	 as	 well	 the	 graph	 vertex	 data	 elements	

 4

contain	no	error	management	knowledge,	the	application	fails	more	often	at	very	high	fault	rates.	
The	AMG	code	 is	naturally	resilient	 to	errors.	Most	of	 its	memory	 is	allocated	to	the	 intermediate	
solution	grids	at	each	level	in	the	V-cycle,	and	as	an	iterative	algorithm,	it	can	often	reach	a	solution	
in	spite	of	errors.	The	pointer	arithmetic	is	the	most	sensitive	to	silent	corruptions	and	the	robust	
qualifiers	create	redundant	copies	which	allow	detection	and	correction	for	errors	injected	in	these	
variables.	

	

Figure	2.	Evaluation	of	application	kernel	robustness	for	various	fault-injection	rates.	

At	 direction	 of	 the	 government,	 we	 also	 implemented	 simple	 amelioration	 strategies	 to	 two	
Conjugate	 Gradient	 implementations	 (a	 traditional	 CG	 and	 a	 Self-Stabilizing	 CG)	 as	 well	 as	 a	
algorithmic-based	 fault-tolerance	 (ABFT)	 strategy	 for	 the	 popular	 matrix-matrix	 multiplication	
DGEMM	kernel.	 	In	the	case	of	DGEMM	there	are	column-	and	row-wise	checksums	that	allow	the	
implementation	to	recover	the	correct	matrix	element	value	in	the	presence	of	an	error.		For	the	CG	
kernels	 the	 implemented	 amelioration	 procedures	 were	 respectively	 a	 roll-forward	 and	 a	 roll-
backwards	to	the	previous	iteration	of	the	algorithm	and	using	selected	saved	data.		

	

Figure	3.	Evaluation	of	Simple	Amelioration	strategies	for	DGEMM	(ABFT)	and	Conjugate	Gradient	(roll-
forward	and	roll-backwards).	

Figure	3	above	summarizes	the	results	of	these	experiments	for	various	fault	injection	rates.	For	the	
DGEMM	 code,	 the	 checksum-based	 amelioration	 is	 applicable	 for	 only	 the	 static	 data,	 i.e.	 the	
operand	 matrices	 which	 are	 initialized	 at	 the	 beginning	 and	 whose	 values	 do	 not	 change	
throughout	the	execution.	A	total	of	75%	of	all	executions	converge	correctly	for	a	rate	that	injects	
an	error	every	5	minutes	but	only	27%	complete	correctly	at	 the	accelerated	rate	of	an	error	per	
minute.	For	the	CG	computation,	we	leverage	the	 iterative	nature	of	the	algorithm	that	allows	the	
execution	to	often	overcome	errors	on	the	solution	vector	while	the	operand	matrices	are	protected	
using	checksums.
	

 5

Many	faults	are	only	detectable	by	the	appearance	of	erroneous	data	in	program	state.	N-modular	
redundancy	is	the	traditional	mechanism	for	detecting	these,	and	the	overhead	exceeds	N	as	there	
are	 synchronization	 and	 comparisons	 added	 to	 implement	 it,	 not	 just	 multiple	 copies	 of	 the	
computation.	 The	FAIL-SAFE	project	 explored	 an	 adaptive	 redundant	multithreading	 variation	of	
this	well	know	technique.	The	compiler	replicates	code	blocks	 identified	by	 the	programmer	 that	
can	serve	as	spheres	of	replication,	where	values	can	be	checked	before	errors	propagate	beyond	
the	boundaries.	An	introspective	runtime	system	can	enable	or	disable	redundancy	for	any	of	these	
code	spheres	based	on	the	fault	rates	it	is	observing.	As	shown	below,	in	figure	4,	this	reduces	the	
overhead	of	using	redundancy	to	test	for	the	presence	of	errors,	relative	to	process	pairing.	
	

	
	
Figure	4:	Adaptive	redundant	multithreading	reduces	overhead	relative	to	full	process	replication.	

	
	

	
	
Figure	5:	Performance	overhead	of	fault	aware	thread	assignment	for	modeling	accuracy	rates	of	10	

and	90%.	Note	that	this	quickly	plateaus	once	the	faulty	cores	have	been	isolated.	
	
Another	tool	 that	an	 introspective	system	could	have	at	 its	disposal	 is	 the	ability	to	migrate	tasks	
away	 from	 faulty	 cores.	 Faults	 in	 systems	 are	 correlated	 in	 both	 time	 and	 place.	 	 For	 example,	
studies	have	shown	that	5%	of	 locations	account	 for	95%	of	 faults.	One	can	attempt	to	anticipate	
the	 occurrence	 of	 future	 faults	 based	 on	 historical	 data.	 	 Figure	 5	 above	 illustrates	 the	 overhead	
resulting	 from	anticipating	 faults	and	migrating	tasks.	Note	that	 the	 first	 ten	or	so	errors	 injected	

 6

have	a	significant	deleterious	impact	on	performance,	but	that	it	quickly	stabilizes	as	the	fault	rate	
increases.	This	 is	because	 the	higher	 fault	 rates	provide	more	data	with	which	better	predictions	
can	be	made,	and	faulty	cores	isolated.	
	
Accomplishments:	ROSE	Implementation	of	the	FAIL-SAFE	Assertion	Language	
	
As	part	of	the	FAIL-SAFE	project,	LLNL	defined	a	set	of	language	annotations	in	the	form	of	C/C++	
pragmas	to	meet	the	requirements	defined	by	the	draft	FAIL-SAFE	Assertion	Language.		These	were	
realized	using	LLNL’s	ROSE	compiler	transformation	front-end,	a	tool	whose	ongoing	development	
at	LLNL	made	 them	a	 critical	member	of	 the	FAIL-SAFE	 team.	The	FAIL-SAFE	assertion	 language	
gives	a	set	of	abstract	syntax	and	grammar	rules	to	represent	predicates	and	directives.	Predicates	
are	further	categorized	into	status	predicates	and	data	predicates.	Status	predicates	are	associated	
with	 a	 point	 of	 execution	 related	 to	 a	 statement	 and	 specify	 a	 condition	 that	 needs	 to	 be	 valid	
whenever	 that	 point	 is	 reached	 during	 program	 execution.	 Data	 predicates	 are	 associated	 with	
objects	generated	in	the	context	of	a	variable,	type,	or	class	declaration	and	specify	a	condition	that	
must	 hold	 for	 these	 data	 throughout	 their	 lifetime.	 Directives	 include	 mostly	 tolerance	 and	
redundancy	 directives.	 A	 tolerance	 directive	 is	 to	 express	 tolerance	 for	 certain	 classes	 of	 errors	
occurring	 during	 the	 execution	 of	 the	 program,	 such	 as	 arithmetic	 or	 SECDED	 (single-error	
correction	double-error	detection)	errors.	Redundancy	management	directives	are	mainly	used	in	
high-reliability	 sections	 for	 the	 enforcement	 of	 hard	 correctness.	 They	 provide	 a	 set	 of	methods	
based	on	the	redundancy	of	code	or	data.	
	
A	concrete	set	of	language	annotations	for	actual	programming	languages	are	needed	to	instantiate	
the	 assertion	 language	 and	 enable	 programmers	 to	 use	 our	 assertions.	 Our	 design	 follows	 the	
pragma	 convention	 of	 OpenMP	 specification	 for	 easier	 understanding	 and	 compiler	
implementation.	Both	C/C++	and	Fortran	programs	can	also	be	uniformly	handled	using	OpenMP-
style	pragmas.		
	
Each	directive	starts	with	#pragma	failsafe	.	Directives	are	case-sensitive.	The	general	form	is	
	
#pragma	failsafe	directive-name	[clause	[[,]	clause]	….]	new-line	
	
A	 FailSafe	 executable	 directive	 applies	 to	 at	 most	 one	 succeeding	 statement,	 which	 must	 be	 a	
structured	block.	Some	representative	example	pragmas	we	define	are	depicted	below:		
	
//	Status	Predicates	
…	
x=f0(y);			
#pragma	failsafe	status	assert	(x	<	U)	error	(ET3)	recover	(R3,x,y,U)	
L1:	z=g(x);	
...	
	
//	Another	status	predicate	
...	
LOOP1:	while	cexpr	
{	
/*	while-body	*/	
#pragma	failsafe	status	assert	(x	<	y)	error	(...)	
}	

 7

...	
//	Data	predicates	
//	form	1:	context	based	
...	
int	ncycles;	
#pragma	failsafe	data	assert	(0	<=	ncycles	<=	maxcycles)	
	
//	form	2:		using	region	reference	in(R1)	
...	
int	ncycles;	
...	
#pragma	failsafe	data	assert	(0	<=	ncycles	<=	maxcycles)	in	(ncyles)	
	
//form	3:	using	wild	card	keyword:	allvars	
	
int	ncycles,	mcycles;	
#pragma	failsafe	data	assert	(0	<=	allvars	<=	maxcycles)	
	
Using	the	ROSE	compiler	infrastructure,	we	have	also	implemented	the	parsing	support	for	the	set	
of	 C/C++	 pragmas	we	 defined,	 including	 those	 specifying	 assertion	 region,	 status	 predicate,	 data	
predicate,	 violation	 types	 and	 so	 on.	 The	 implementation	 is	 based	 on	 the	 extensions	 to	 ROSE	 to	
parse	 input	 programs	 annotated	 with	 our	 pragmas	 and	 store	 the	 information	 as	 persistent	
attributes	attached	to	ROSE’s	AST	(abstract	syntax	tree).	As	a	result,	we	now	have	a	proper	internal	
representation	of	programs	using	assertion	language	annotations.	
	
These	transformations	 include	the	translation	of	an	 important	subset	of	directives	and	constructs	
defined	in	the	FAIL-SAFE	language	and	were	validated	early	using	the	USC’s	tested-bed	albeit	in	a	
semi-manual	fashion.	The	automation	of	these	directives	is	completed	but	there	are	still	imitations	
about	 the	 data	 types	 and	 compiler	 analysis	 supported	 in	 the	 current	 software	 distribution.	 The	
software	 has	 been	 tested	 and	 delivered	 at	 the	 request	 of	 the	Government	 on	 a	 computer	 cluster	
located	at	the	University	of	Maryland	and	under	the	supervision	of	Dr.	Simon	Tyler.	
	
Accomplishments:	SHINE	Component	of	the	FAIL-SAFE	IFR	
	
The	FAIL-SAFE	IFR	works	by	monitoring	the	run-time	execution	of	an	application	and	the	system	it	
runs	on,	and	manages	their	responses	to	errors.	Whenever	an	error	occurred,	its	location,	type,	and	
severity,	will	all	be	communicated	to	the	IFR	which	will	analyze	errors	and	subsystem	failures,	and	
provide	feedback	to	the	application,	the	operating	system,	and	ultimately	the	developers	and	users	
of	the	application.	The	role	of	 the	IFR	can	be	understood	as	encapsulating	functionality	related	to	
the	monitoring	and	analysis	of	special	events	that	occur	during	the	execution	of	the	application,	and	
reasoning	about	related	problems	and	recovery	strategies.	For	example,	the	IFR	may	react	to	failing	
correctness	 assertions,	 monitor	 the	 cache	 misses	 and	 performance	 characteristics	 of	 program	
sections,	and	reason	about	the	frequency	of	errors	over	time	and	their	correlation.	In	case	of	severe	
errors	it	may	negotiate	with	the	operating	system	about	an	appropriate	recovery	strategy.	
	
At	the	heart	of	the	IFR	is	the	Spacecraft	Health	Inference	Engine	(SHINE)	and	a	IFR	knowledge	base.	
In	principle,	this	capability	can	be	also	applied	to	areas	beyond	fault	tolerance,	such	as	performance	
tuning,	 energy	 and	 power	 management,	 behavior	 analysis,	 and	 intrusion	 detection.	 SHINE	 was	
selected	because	it	was	specifically	designed	to	monitor	a	highly	instrumented	system	and	react	to	

 8

conditions	 in	real-time.	SHINE	 is	capable	of	executing	100,000,000+	 inferences	per	second	where	
the	 second	 best	 inference	 engine	 at	 the	 time	 (CLIPS)	 only	 executed	 40,000	 rules	 per	 second.	 In	
order	 to	 actively	 monitor	 applications	 as	 they	 are	 running	 and	 to	 additionally	 react	 to	 their	
behaviors,	 the	 CLIPS	 engine	 was	 nowhere	 near	 fast	 enough.	 JPL	 has	 extensive	 experience	 using	
SHINE,	making	it	a	uniquely	valuable	team	member	for	the	FAIL-SAFE	project.	
	
SHINE	 is	 intended	 for	 those	 areas	 of	 inference	where	 speed,	 portability,	 and	 reuse	 are	 of	 critical	
importance.	 	 Such	 areas	 have	 historically	 included	 spacecraft	 monitoring,	 control	 and	 health,	
telecommunication	 analysis,	 medical	 analysis,	 finical	 and	 stock	 market	 analysis,	 fraud	 detection	
(e.g.	banking	and	credit	cards),	robotics	or	basically	any	area	where	rapid	and	immediate	response	
to	high-speed	and	rapidly	changing	data	is	required.		
	
SHINE	 was	 originally	 designed	 to	 be	 embedded	 in	 single-threaded	 applications	 where	 the	
interruption	 from	 the	 inference	 cycle	 would	 only	 occur	 at	 task	 rescheduling	 points,	 where	 the	
complete	system	state	was	saved	by	the	operating	system	and	only	a	single	SHINE	was	executing	at	
any	 given	 point.	 It	 was	 not	 intended	 to	 be	 an	 all-encompassing	 expert	 system	 for	 mutually	
cooperating	mini	SHINEs	all	running	simultaneously.	Because	of	this	assumption,	all	the	rules	and	
states	 of	 a	 knowledge	base	 are	 reduced	 to	 a	 data	 flow	graph	with	 all	 possible	dependency	paths	
calculated	 in	advanced.	However,	 the	FAIL-SAFE	IFR	required	a	 far	most	robust	control	structure	
where	many	SHINEs	were	all	executing	in	true	parallelism	and	sharing	results	between	them.	This	
caused	the	state	predictions	by	the	compiler	to	be	voided	and	incorrect	inferences	to	be	made.	
	
SHINE	introduces	a	novel	paradigm	for	knowledge	visualization	and	ultra-fast	 inference	that	goes	
well	 beyond	 traditional	 forward	 and	 backward	 chaining	 methodology.	 	 A	 sophisticated	
mathematical	 transformation	 based	 on	 graph-theoretic	 Data	 Flow	 analysis	 is	 introduced,	 that	
reduces	 the	complexity	of	conflict-resolution	during	 the	match	cycle	 from	O(n2)	 to	O(n)	 for	many	
kinds	of	 inference	operations.	 	This	 transformation	executes	compiled	SHINE	knowledge	bases	at	
an	excess	of	33,000,000	rules	per	second	on	flight	hardware	and	over	220,000,000	rules	per	second	
on	a	standard	3	GHz	desktop	PC.		
	
A	 Data	 Flow	 program	 consists	 of	 data	 (1),	 which	 run	 the	 program,	 operations	 (2),	 which	 are	
activated	when	 data	 is	 sent	 to	 them,	 and	 finally	 the	 results	 (3),	 which	 is	what	 the	 program	will	
return	when	completed.	 	When	data	reaches	a	procedure	it	activates	or	"fires	off"	that	procedure.	
Originally	SHINE	only	contained	what	is	called	static	firing,	which	meant	a	fairly	broad	set	of	graph	
optimizations	could	be	applied	to	globally	optimize	the	flow	graph.	To	support	the	FAIL-SAFE	IFR	
domain,	we	 fundamentally	changed	the	SHINE	compiler	 to	 include	two	different	ways	 to	perform	
this	"firing":	(1)	Static	Data	Flow:	A	procedure	will	begin	when	a	piece	of	data	 is	 located	at	every	
input	edge	and	no	data	is	present	at	any	output	edge.	Only	one	piece	of	data	can	reside	on	each	edge	
and	(2)	Dynamic	Data	Flow:	Each	piece	of	data	has	some	way	of	identify	which	other	data	it	belongs	
with,	such	as	a	color,	and	when	all	the	input	edges	contain	data	of	the	same	type,	the	procedure	will	
begin.		Any	input	or	output	edge	can	handle	multiple	pieces	of	data.		
	
A	high	priority	goal	for	FAIL-SAFE	was	to	avoid	introducing	an	overall	performance	loss	to	SHINE	
by	 including	 dynamic	 firing	 so	 we	 introduced	 an	 additional	 analysis	 phase	 to	 only	 isolate	 those	
portions	 of	 a	 rule	 set	 that	 needed	dynamic	 firing	 and	 leave	 the	 rest	 the	 same.	 Thus	 the	dynamic	
firing	portions	are	compiled	with	a	thread-safe	set	of	optimization	rules	that	guaranteed	valid	state	
transitions	between	co-routine	activated	instances	of	SHINE.	
	
Overall,	we	found	Data	Flow	to	be	a	very	powerful	method	of	parallel	programming	or	representing	
knowledge	that	is	executed	in	pseudo	parallelism;	however	it	is	very	difficult	to	write	programs	in	a	

 9

Data	 Flow	 environment.	 	 Un-optimized	 Data	 Flow	 programs	 require	 a	 lot	 of	 storage	 and	 during	
execution	there	are	scheduling	problems,	which	must	be	controlled	by	some	means	of	hardware	or	
a	software	executive.	 	As	a	result,	very	 few	machines	have	been	developed	 for	Data	Flow	and	the	
chances	 are	 that	 very	 few	will	 be	 developed	 for	 commercial	 use	 in	 the	 future	 since	Data	 flow	 is	
expensive.	 However,	 Data	 Flow	 is	 an	 excellent	 means	 of	 representing	 information	 that	 can	 be	
executed	 in	 pseudo	 parallelism,	 optimized,	 and	 then	 mapped	 to	 a	 traditional	 architecture	 for	
execution.		Obviously,	many	of	the	speed	advantages	of	a	true	hardware	Data	Flow	computer	cannot	
be	 realized	when	 executed	 on	 a	 serial	 architecture	 but	 it	 still	 offers	 an	 excellent	 frame	work	 to	
represent	parallel	algorithms	and	an	efficient	means	to	execute	them	over	traditional	methods	
	
Collaborations	and	Leveraged	Funding	
	
We	have	shared	out	draft	assertion	language	with	colleagues	at	Prof.	Sarkar	(Rice	University),	Dr.	
David	 Bernholdt	 (Oak	 Ridge	 National	 Laboratory),	 Dr.	 Erik	 Debenedictis	 (Sandia	 National	
Laboratory),	and	Marti	Bancroft	(DOD	contractor).	Saurabh	Hukerikar	also	spent	two	summers	as	
an	intern	at	Sandia	National	Laboratory,	and	collaborated	with	Robert	Clay.	
	
At	 the	direction	of	 the	Government,	we	have	also	explored	with	Dr.	Benedictis	and	other	of	USC’s	
research	 staff	 the	 trade-off	 between	 sub-threshold	voltage	 computing	 in	 the	 context	 of	 computer	
architecture	 digital	 circuits	 and	 resilience	 for	 increased	 power	 efficiency.	 From	 this	 interaction	
resulted	various	internal	discussions	for	potential	future	actionable	items	in	this	area	of	research.	
	
While,	this	research	has	focused	exclusively	on	software	resilience,	the	USC	component	of	this	work	
builds	on	earlier	 funding	 form	the	Semiconductor	Research	Corporation	 (SRC),	NSF,	DARPA	MTO	
(via	 SRC),	 and	DOE	ASCR’s	 SciDAC-3	 Institute	 for	 Sustained	 Performance,	 Energy,	 and	Resilience	
(SUPER).	 Both	 ROSE	 and	 SHINE	 have	 long	 histories	 of	 support	 and	 use	 from	 DOE	 and	 NASA,	
respectively.	
	
Conclusions	
	
Prior	work,	funded	by	SRC,	revealed	that	there	are	applications	that	tolerate	faults	in	large	portions	
of	their	state	space,	and	continue	to	correct	results.		Our	goal	has	been	to	enable	users	to	share	this	
information	with	their	computing	systems,	and	hence	minimize	unnecessary	disruptions	caused	by	
soft	errors,	which	are	expected	to	be	increasingly	common	in	the	future.		We	have	made	significant	
progress	 towards	 that	 goal.	 	 For	 example,	 we	 demonstrated	 this	 on	 the	 conjugate	 gradient	
algorithm,	 as	 directed	 by	 the	 government.	 Of	 course,	 as	with	 any	 early	 research	 project,	we	 also	
believe	 there	 is	 much	more	 work	 to	 be	 done,	 before	 this	 technology	 can	 be	 integrated	 into	 the	
software	widely	used	by	Defense	computational	scientists.	
	
Technology	Transfer	
	
We	have	distributed	drafts	of	our	assertion	language	to	two	DOD	ACS	program	investigators,	Prof.	
Vivek	Sarkar	at	Rice	University	and	Dr.	David	Bernholdt	at	Oak	Ridge	National	Laboratory.	Per	the	
direction	of	John	Daly,	we	also	shared	it	with	Erik	deBenedictis	of	Sandia	National	Laboratory	and	
Marti	Bancroft,	a	contractor	for	another	DOD	organization.	We	demonstrated	resilient	execution	of	
the	 HPCS	 Random	 Access	 benchmark	 at	 the	 DOD	 ACS	 workshop,	 July	 17,	 2014.	 We	 have	 also	
published	in	the	scientific	literature,	as	enumerated	below.	Finally,	we	have	installed	at	NSA	R3	an	
up-to-date	release	of	the	ROSE	Compiler	Infrastructure	and	an	implementation	of	a	selected	set	of	
the	ROSE-based	source-to-source	transformations	that	support	the	resilience	directives	developed	
as	part	of	the	FAI-SAFE	language	at	a	computer	cluster	at	the	direction	of	the	Government.	

 10

	
	
Future	Plans	
	
Our	longer	term	goal	is	to	broaden	the	space	of	faults	we	can	handle	without	halting	an	application	
or	 the	 computing	 system	 its	 running	 on.	 	We	will	would	 like	 to	 fully	 integrate	 and	 validate	 in	 a	
production	environment	the	research	artifacts	developed	here,	namely,	the	integration	of	the	ROSE	
compiler	 transformations	with	 the	user-provided	codes	 in	 collaboration	with	 the	 IFR	system	and	
release	 it	 as	 open-source	 for	 DOD	 and	 the	 broader	 community.	We	 are	 searching	 for	 additional	
research	support	to	continue	these	efforts.	
	
Publications	
	

• S.	Hukerikar,	P.	Diniz,	and	R.	Lucas,	“Resilience	for	Exascale	HPC	Systems,	A	Programming	Model	
Approach”,	SIAM	Conf.	on	Parallel	Processing	for	Scientific	Computing,	Feb.	2014,	Portland,	OR,	
USA	

	
• S.	 Hukerikar,	 K.	 Teranishi,	 P.	 Diniz,	 R.	 Lucas,	 "Opportunistic	 Application-level	 Fault	 Detection	

through	 Adaptive	 Redundant	 Multithreading",	 Intl.	 Conf.	 on	 High	 Performance	 Computing	 &	
Simulation	(HPCS	2014),	July	2014,	Bologna,	Italy	

	
• S.	Hukerikar,	K.	 Teranishi,	 P.	Diniz,	R.	 Lucas,	 "An	Evaluation	of	 Lazy	Fault	Detection	based	on	

Adaptive	 Redundant	 Multithreading",	 Eighteenth	 Annual	 IEEE	 High	 Performance	 Extreme	
Computing	Conference	2014	(HPEC	‘14),	Sept.	2014,	Waltham,	MA	USA	

	
• S.	 Hukerikar,	 P.	 Diniz,	 R.	 Lucas	 "Enabling	 Application	 Resilience	 through	 Programming	Model	

based	 Fault	 Amelioration",	 in	 Proc.	 of	 the	 IEEE	 High	 Performance	 Embedded	 Computing	
Conference	2015,	(HPEC’15),	Sept.	2015,	Waltham,	MA	USA	

	
• S.	 Hukerikar,	 P.	 Diniz,	 R.	 Lucas,	 RoLex:	 Resilience	 Oriented	 Language	 Extensions	 for	 Exascale	

Computing,	Journal	of	Supercomputing	(2015)	(under	review)	
	

• S.	 Hukerikar,	 P.	 Diniz,	 R.	 Lucas,	 Application	 level	 Fault	 Detection	 and	 Correction	 based	 on	
Adaptive	 Redundant	 Multithreading,	 Intl.	 Journal	 on	 Parallel	 Programming	 (2015)	 (under	
review)	

	
• J.	 Lidman,	 S.	 McKee,	 D.	 Quinlan	 and	 C.	 Liao,	 An	 Automated	 Performance-Aware	 Approach	 to	

Reliability	Transformations,	Euro-Par	2014,	August,	Porto,	Portugal.	
	

	
	
Graduate	Students	Supported	
	
Dr.	Saurabh	Hukerikar	received	his	PhD	in	Electrical	Engineering	in	the	summer	of	2015.	His	thesis	
was	entitled	“Introspective	resilience	for	exascale	high-performance	computing	systems”.	He	is	now	
a	post	doctoral	scholar	at	the	Oak	Ridge	National	Laboratory.	
	
	 	

 11

Appendix	1	
FAIL-SAFE	Assertion	Language	V8.0	

The FailSafe Assertion Language
Version 8.0

Hans P. Zima, Erik DeBenedictis, Jacqueline Chame, Pedro C. Diniz, Robert F. Lucas

May 18, 2015

Contents

1 Introduction 3
1.1 Fault Tolerance . 3
1.2 Hard Correctness versus Soft Correctness . 3
1.3 Overview of the Assertion Language . 4
1.4 The FailSafe System . 5

2 Regions 5
2.1 Syntax . 5
2.2 Regions and Their Association With Assertion Language Constructs 6

3 Error Control 7
3.1 Syntax . 7
3.2 Overview . 8
3.3 Error Classes . 8
3.4 Error Handler . 9

3.4.1 Basic Error Recovery . 9
3.4.2 Standard Error Recovery . 9
3.4.3 Composite Region Error Recovery . 10

3.5 Redundancy Management Directives . 11

4 Assertions 12
4.1 Syntax . 12
4.2 Overview . 12
4.3 Assert Clauses . 13
4.4 Rules for the Association Between Predicates, Regions, and Error Handlers 13
4.5 Built-In Predicates for Error Detection . 14

4.5.1 Check Predicate . 14
4.5.2 Check Tolerance . 14
4.5.3 Check Error . 14

4.6 Examples . 14

1

5 Tolerance Directives 19
5.1 Syntax . 19
5.2 Overview . 20
5.3 Variable Tolerance Clauses . 20

5.3.1 Error Tolerance Clause . 20
5.3.2 Examples for the Error Tolerance Clause . 21
5.3.3 Tolerant Memory Clause . 23
5.3.4 Example for Tolerant Memory Clause . 23

5.4 Global Tolerance Directives . 23

6 Pragmas 24
6.1 Syntax . 24
6.2 Overview . 24
6.3 Voltage Pragmas . 25
6.4 Examples for Voltage Pragmas . 26

7 Conclusion 27
7.1 Potential Future Extensions of the Assertion Language . 27

7.1.1 Dynamic Management of Assertion Language Constructs 28
7.1.2 Approximate Types . 28
7.1.3 Assertion Language Support for Parallelism . 28

7.2 On the Semantic Limits of the Assertion Language and Its Implementation 28

2

Preliminary Note

This document contains the specification of Version 8 of the assertion language, representing a major re-
vision of Version 7.0 distributed on June 20th, 2014. It includes new material on error control, introduces
additional constructs and streamlines some of the previously introduced concepts, resulting in some changes
of terminology.

The document continues to use an ad-hoc pseudo syntax whose main purpose is to serve as a framework
for explaining the semantics of the assertion language. Any mapping of that syntax to a host language that
preserves these semantics is considered valid.

1 Introduction

1.1 Fault Tolerance

Fault tolerance is one important aspect of a system’s dependability, a property that has been defined by
the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance as the “trustworthiness of a
computing system which allows reliance to be justifiably placed on the service it delivers”.

A threat is any fact or event that negatively affects the dependability of a system. Threats can be
classified as faults, errors, or failures; their relationship is illustrated by the fault-error-failure chain [1].

A fault is a defect in a system. Faults can be dormant—e.g., incorrect program code that is not
executed—and have no effect. When activated during system operation, a fault leads to an error, which
is an illegal system state. A fault inside a component is called internal; an external fault is caused by a
failure propagated from another component, or from outside the system. Errors may be propagated through
a system, generating other errors. For example, a faulty assignment to a variable may result in an error char-
acterized by an illegal value for that variable; the use of the variable for the control of a for-loop can lead
to ill-defined iterations and other errors, such as illegal accesses to data sets and buffer overflows. A failure
occurs if an error reaches the service interface of a system, resulting in system behavior that is inconsistent
with its specification.

In systems with an exascale computing capability we must assume that there exist faults and that errors
will occur. The goal of the FailSafe system is to achieve fault tolerance by ensuring that despite the potential
existence of errors the system will never enter a failure state.

1.2 Hard Correctness versus Soft Correctness

The traditional approach to program correctness has been based on the requirement that the program exe-
cutes perfectly on a cycle-by-cycle basis, with numerical results mathematically precise except for possible
rounding errors. We call this hard correctness. For algorithms such as sorting, which need to deliver a
well-defined unique result, this represents the only valid approach to deal with correctness. However, for
many algorithms this strict requirement can be relaxed by replacing it with soft correctness, a fidelity con-
cept that defines the correctness of a result based on a user-perceived quality of the solution that tolerates
some errors as long as they satisfy an associated validity criterion.

Early ideas in this direction originated from AI in the context of “soft computing” [12]; however the
principal idea of qualitatively defining correctness at the algorithmic level applies to other applications
as well, with examples including image processing, pattern-matching algorithms in bioinformatics, and
iterative numerical algorithms yielding approximate results [7].

3

The adoption of soft correctness has immediate consequences for fault tolerance. Essentially, it leads to
the notion of the degree of correctness of an algorithm, which is determined by the amount of tolerable error.
For example, some errors may be completely ignored (such as a few erroneous pixels in a large image file),
some errors occurring in a hierarchical control structure may be corrected at a higher level of abstraction,
and even certain hardware component failures may be tolerated at the application level.

A major motivation for the distinction between hard and soft correctness is the significantly higher over-
head in terms of execution time and energy consumption for enforcing hard correctness. As a consequence,
it is often useful to partition a program into high-reliability and low-reliability sections. In high-reliability
sections, program semantics demand a strictly enforced hard correctness approach. Reliability in such sec-
tions can be supported via software mechanisms such as correctness assertions, introspection, and redundant
execution. In contrast, low-reliability sections can tolerate certain classes of errors, thus significantly reduc-
ing overhead. Errors occurring in such sections may be ignored or corrected at a higher level of abstraction,
depending on algorithm-specific validity criteria. “Sandboxing” [3] is a method useful for certain numerical
applications that supports such a distinction. It was originally used in computer security applications, where
an untrusted “guest code” is executed in an isolated state space (the “sandbox”), which protects the rest of
the application (the “host”) from errors occurring during execution of the guest code. A recent case study
illustrates this approach with FT-GMRES, a fault-tolerant Generalized Medium Residual algorithm for solv-
ing non-symmetric linear systems: the guest represents an unreliable inner solver for a linear system A.x=y,
with a given termination criterion. The outer solver checks the solution vector for errors and determines
if the result converges within the bounds specified by the algorithm; minor numerical perturbations are ig-
nored. If the solution contains errors or diverges, it is disbanded and replaced with a valid value determined
by information in the state space of the host.

1.3 Overview of the Assertion Language

The assertion language (AL) provides a set of constructs that can be embedded in a host language program
for the purpose of checking the state of computations during runtime, expressing tolerance for certain kinds
of program errors, and specifying relationships that can be used for dynamic program optimization.

In contrast to approaches such as the Java Assertion Language [10], AL is defined independently of a
particular host language. However, given a specific host language, the details of AL semantics will to a
certain extent rely on host language features such as expressions, naming, and scoping conventions.

AL constructs fall into four major categories: (1) assertions, (2) tolerance directives, (3) pragmas, and
(4) error control features.

Assertions provide a means to express the knowledge that a propositional logic predicate over data
should be satisfied at certain points during program execution. Predicates are classified as either status
predicates or invariants. Status predicates define a precondition or postcondition for individual program
statements, whereas invariants must be satisfied throughout extended regions.

A major purpose of assertions is their support for the hard correctness of an algorithms. For example,
assertions used in the context of a sandbox may be used to determine if the potentially erroneous results
of computation in a low-reliability region can be used at a higher level of abstraction. Assertions also
provide some limited support for a Design by Contract capability [8, 9]. Specifically, status predicates allow
reasoning about the partial correctness of program components via Hoare logic [4]: whenever a statement
is executed in a state that satisfies its precondition then, if the execution of the statement terminates, the
postcondition must hold immediately after its termination.

4

Tolerance directives instruct the system to ignore occurrences of certain classes of errors during pro-
gram execution.

Pragmas can provide information about key relationships between energy consumption, performance,
and reliability that can guide the system in optimizing an objective function at runtime, depending on the
environment in which a program executes.

Finally, error control features provide tools for error recovery via the association of error-handling
routines with AL constructs and source program components.

1.4 The FailSafe System

Exascale architectures will be characterized by heterogeneous processing and memory structures, millions
of components, and deep memory hierarchies. Applications executing in such systems will need to balance
the quest for performance optimization and minimization of energy consumption with a flexible approach to
resilience that combines the enforcement of hard correctness for critical code components with an accept-
able degree of fault tolerance for less critical code sections. The salient goal of the assertion language is
to provide information that supports the FailSafe system, as outlined in Figure 1, in the implementation of
strategies for the optimization of objective functions in this complex space.

A major component of the FailSafe system is the Introspection Framework for Resilience (IFR) [6]. The
IFR encapsulates functionality related to the monitoring and analysis of errors and other special events that
occur during program excution and reasons about related optimization and recovery strategies. At its heart
is a powerful inference engine. The IFR generates information for the Knowledge/Experience Database
(KEX), which in an advanced version will include knowledge about the application domain, properties of
the underlying hardware and software system, strategic optimization goals, and behavioral data extracted
from actual executions. The information in the KEX evolves dynamically as an application is subject to
iterative optimization steps during multiple compile/execute cycles; its input to the user, or to a future auto-
mated dynamic model evaluator, provides the opportunity to adapt the annotation of the source program for
a new compile/execution iteration by taking into account the results of previous iterations and their analysis.

One of the implicit assumptions when discussing assertion languages is often that the management of
its constructs is exclusively in the hands of the user. However, the above outline of IFR functionality in the
context of KEX and powerful methods for compilation and runtime analysis, suggests that the compiler as
well as the IFR and the runtime system may, in a future system, play an important role for the generation,
management, and execution control of assertion language constructs, either autonomously or in cooperation
with the user.

2 Regions

2.1 Syntax

1. region→ program-region | data-region

2. program-region→ single-point-region | composite-region

3. single-point-region→ statement-label | function-identifier

5

4. composite-region→ function-region | assertion-region

5. assertion-region→ statement-label “: region ” [error-handler] “{” statement-sequence “}”

6. data-region→ declaration-label | variable-identifier | memory-region-identifier

7. aggregate-region→ aggregate-single-point-region | aggregate-data-region | aggregate-program-region

8. aggregate-single-point-region→ “ in (” single-point-region-list “)”

9. aggregate-data-region→ “ in (” data-region-list“)” [region-constraint]

10. region-constraint→ modifier “(” composite-region-list “)” | other-constraint

11. modifier→ “ excluding ” | “ restricted to ”

12. aggregate-program-region→ “ in (” composite-region-list“)” [region-constraint]

2.2 Regions and Their Association With Assertion Language Constructs

Each defining occurrence of an AL construct associates it with one or more regions, which we call the target
regions of the construct. Regions exist in space and time: they are connected to certain components of the
source program, such as variable or function declarations, and their period of existence is determined by the
way in which these components are used during program execution. We use the term lifetime to refer to this
period both for regions as well as for their associated AL constructs.

A region is either a program region or a data region. Program regions can be single point or composite
regions. A single point region is either defined by a statement label or by a function identifier. In the first
case, it identifies the statement determined by that label; in the second case, it represents all statements that
invoke the function. If S denotes such a statement, then it is associated with two single points of execution:
its pre-execution point denotes the point immediately before an execution of S, and its post-execution point
the point immediately following an execution of S.

In contrast to single point regions, composite regions are defined by contiguous sets of statements. They
can be function regions or assertion regions. The lifetime of a function region is determined by the period
of time in which the program executes any invocation of that function. An assertion region is a labeled
contiguous block of source code statements marked by the region keyword and enclosed between “{” and
“}”. Assertion regions must satisfy the single-entry condition. Their lifetime is any period of time in which
program execution resides in that region.

A data region is either a declaration region, identified by the name of a source language declaration 1,
or a variable region, identified by the name of a single variable. If v1, . . . , vn are the variables declared in a
declaration region, then it represents the set of all variable regions for the vi, 1 ≤ i ≤ n.

During program execution, a variable region will result in the creation of a set of data objects. Depend-
ing on the declaration of the variable such objects may be of a simple type, pointers, or aggregates such as
arrays, structures or class instances. The lifetime of a variable region is the period of time during which
any associated objects exist during program execution. The lifetime of a declaration region is the union of
the lifetimes of the associated variable regions. For tolerance directives (see Section 5), specially managed
error-tolerant memory regions are also considered as data regions.

1Here we assume that the language provides syntax for labeling a declaration.

6

The association of an AL construct with its target regions can be established in two ways: first, by
context, i.e., by placing the construct in the source program text adjacent to a program object, which then
becomes its single target 2. Secondly, as a syntactic convenience, the defining occurrence of an AL construct
can be specified separately from its target regions in the source program by providing an explicit link to its
associated aggregate-region. In general, such a link is of the form:

in (R1, ...Rn) [C]

where n ≥ 1, R1, ...Rn denote regions, and C is an optional region constraint. All regions R1, ...Rn must
be of the same type, i.e., single-point regions, composite regions, or data regions. A region constraint can be
used to exclude some implicit components, such as nested functions or assertion regions, from the aggregate
region. For example:

float A, B, C;
...
atype function f(...) {...};
...
assert (p(allvars)) in (A,C) excluding (f);

Here, the invariant predicate p is asserted to hold for the assertion’s target variables A and C throughout
their lifetimes, except when program execution resides in an invocation of function f (allvars refers to
every variable with which the assertion is associated).

The detailed rules governing the association of AL constructs with their targets will be discussed in the
relevant sections.

3 Error Control

3.1 Syntax

1. error-control→ error-handler | redundancy-management-directive

2. error-handler→ basic-error-recovery | standard-error-recovery | composite-region-error-recovery

3. basic-error-recovery→ “ error (” basic-error-handler “)”

4. basic-error-handler→ function-invocation

5. standard-error-recovery→ basic-error-recovery | “ error (”class-specific-recovery+ [else-clause] ”)”

6. class-specific-recovery→ error-class “→” basic-error-handler“;”

7. error-class→ numerical error | NaN | Inf | floating-point-representation-error | integer-representation-
error | SECDED | crash | predicate violation | tolerance violation | other-predefined-error-class |
user-defined-error-class | ANY

8. else-clause→ “ else ” basic-error-handler
2The detailed rules for contextual association are implementation dependent.

7

9. composite-region-error-recovery→ standard-error-recovery repetition-directive [save-directive]

10. repetition-directive→ “ repeat (”rep-count [“,” restore-directive] [“,” final-error-recovery] “)”

11. rep-count→ integer-expression

12. restore-directive→ “ restore (” data-region-list “)”

13. final-error-recovery→ “ finally (” basic-error-handler “)”

14. save-directive→ “ save (” data-region-list “)”

15. redundancy-management-directive→ redundancy-degree decision-criterion [standard-error-recovery]

16. redundancy-degree→ “ double ” | “ triple ”

17. decision-criterion→ “(” variable-list “)”

3.2 Overview

Each error occurring during the execution of a program belongs to a specific error class. For system-defined
error classes, such as numerical error , default error handlers are provided. Future versions of AL are
expected to provide a capability for user-defined error classes and their management.

Error control in AL includes two sets of features: the first set, subsumed under the term error handler,
allows the specification of recovery mechanisms for errors occurring in the associated AL or source program
construct. Three levels of increasing complexity are distinguished: basic error handlers deal with an error
by calling a function that executes a recovery routine. This is the only available option for status predicates.
Standard error recovery includes basic error handlers plus a capability for selecting an error response de-
pending on the error class; it can be used in the context of data regions and composite regions. Finally,
composite region error recovery supports additional features specially oriented towards composite regions
including repeated execution of the region and control for the saving and restoring of data structures.

The second set of error control features of AL is focused on preventing and/or correcting errors occurring
in composite regions. It provides redundancy management directives that execute a composite region two
or three times and evaluate the correctness of results based upon a decision criterion.

3.3 Error Classes

Below we characterize briefly some of the system-defined error classes.

1. numerical error : this is the class of all kinds of numerical errors, including the four classes descibed
below.

2. NaN : In the IEEE-754 standard, NaN (Not a Number) represents a non-numerical value occurring in
a context that requires a number.

3. Inf : In the IEEE-754 standard, Inf (Infinity) represents the occurrence of an overflow in a numerical
computation.

4. Floating-Point Representation Error

8

5. Integer Representation Error

6. SECDED : Single-error correction, double-error detection.

7. crash : Processor crash.

8. predicate violation : Evaluation of a status predicate or invariant during its lifetime yields false (see
Section 4).

9. tolerance violation : Evaluation of a tolerance clause during its lifetime yields false (see Section 5).

10. ANY : An error belonging to any class.

3.4 Error Handler

3.4.1 Basic Error Recovery

Basic error recovery results in the invocation of a basic error handler, which is a system- or user-defined
function. This function call may contain arguments that provide a more detailed characterization of the error
as well as additional information about program components that may have contributed to the error, such as
key variables involved in the erroneous computation.

Example

x=f(y) assert (pre (y < U)) error (range violation(y,U));

In this example, the predicate y < U is a precondition associated with the assignment statement x = f(y),
which needs to be satisfied immediately before an execution of the assignment. Its violation results in the
invocation of the basic error handler range violation.

3.4.2 Standard Error Recovery

Standard error recovery can be used to address errors that occur during the execution of a data or composite
region. In addition to basic error recovery it provides a capability for specifying recovery depending on the
error class:

error (c1 → h1;
...
cn → hn;
[else hn+1])

where,

• n ≥ 1 is the number of error classes for which recovery is specified explicitly

• ci, 1 ≤ i ≤ n, denotes an error class

• hi, 1 ≤ i ≤ n, denotes a basic error handler associated with error class ci

9

• hn+1 denotes the optional basic error handler for any error with a class different from all of the
ci, 1 ≤ i ≤ n

Assume R to be the region with which this construct is associated, and that an error of class c has been
detected during execution in R. Then c is sequentially compared with c1, c2, If ci, 1 ≤ i ≤ n, matches c,
then hi will be activated. If c is different from all ci, 1 ≤ i ≤ n, and an else clause is specified, then handler
hn+1 will be activated. In the absence of an else clause a system-specific response will be initiated in this
case 3.

3.4.3 Composite Region Error Recovery

A composite error recovery specification is of the form:

error (c1 → h1;
...
cn → hn;
[else hn+1])
repeat (maxrep [, restore (vj1 , ...vjp)] [, finally (h)])
[save (v1, ...vm)]

where,

• n, ci, and hi have the same meaning as above

• maxrep is an integer expression with a value ≥ 1 that specifies the maximum of repetitions of R to be
performed in the case of error.

• the vj1 , ...vjp in the optional restore directive denote a subset of the variables v1, ...vm specified in the
associated save directive

• h denotes a basic error handler

• vj , 1 ≤ j ≤ m, with m ≥ 1, in the optional save directive specifies a program variable

This construct is executed as follows:

1. R is initially activated, after executing the save directive if present.

2. If the execution of R is error-free, normal program execution continues with the statement following
R.

3. If during the execution of R an error occurs, then a response as described above in Section 3.4.2 is
initiated. If this response is able to successfully process the error in the sense that an effect equivalent
to a correct execution of R is achieved, normal program execution is continued with the statement
following R.

Otherwise, a repeated execution of R is initiated, after restoring the values of variables specified in
the restore directive, if present. If a restore directive is not specified, but a save directive has been
executed at the beginning, all variables specified in the save directive will be restored at that point.

3The semantics of this construct is slightly different if used in the context of tolerance directives, see Section 5.

10

4. Step 3 is repeated until R has been executed at most maxrep times. If, at the maxrep-th execution, no
error occurs, normal program execution continues. Otherwise, if present, the handler, h, specified in
the final error recovery is activated. If no final error recovery is specified, a system dependent error
handler will be invoked at this point.

If a save directive is part of the construct, then the variables vj , 1 ≤ j ≤ m, will be saved by the system
immediately before the execution of R is initiated 4.

Example

R1: region R1 error (SECDED → secded handler(...);
numerical error → numeric handler(...);
else other handler(...))

repeat (2, finally (final handler(...)));
{S1;S2;...}

If an error occurs during the initial execution of region R1, the following actions are performed:

• If the error is of class SECDED or numerical error , then secded handler or numeric handler will be
respectively activated. If an error of a different class occurs, then other handler will be activated. If
the error handler can repair the problem, then normal execution continues with the statement following
R1. Otherwise, the execution of R1 is repeated.

• After the first repeated execution of R1, the same actions as in Step 1 above are taken.

• If a second repeated execution of R1 is necessary, and no error occurs during that execution, normal
program execution continues. If an error occurs during that execution, the basic error handler final-
handler(...) is activated.

3.5 Redundancy Management Directives

Error control features in AL include a preliminary version of redundancy management directives (RMD)s,
which control the redundant execution of a composite region, R, subject to two constraints 5: (1) R satisfies
the single-entry single-exit condition, and (2) the execution of R does not result in any side effects for non-
local variables. A region satisfying these constraints is called an RMD region; it can be associated with an
optional standard error recovery construct.

A key component of an RMD is the decision criterion: it specifies a nonempty list of decision variables
whose values at the end of redundant executions determine the decision on the correctness of the region’s
execution.

Two kinds of RMDs are distinguished: double redundancy directives, and triple redundancy directives.
Let R denote a composite region to which one of the directives is applied. Then the effect of RMDs can be
described as follows:

4The execution of the save directive may result in considerable overhead in terms of performance, memory use, and energy
consumption, in particular if large data structures need to be copied. This problem may be alleviated by providing more flexibility
for the choice of data to be saved and/or restored via additional control features.

5Loosening these restrictions may be possible in certain contexts. This applies specifically to the single-exit constraint, which
is not required for extended basic blocks.

11

1. Double Redundancy Directive: R will be executed twice, applied to the same input and without any
intermediate computations affecting the results of these executions.

If at least one of these executions encounters an error before terminating, then the execution of R is
considered erroneous, and a recovery action is taken upon the first detection of such an error.

If both executions of R terminate without error, and the values of all decision variables after termina-
tion are identical for both executions, then the execution of R is considered error-free. Otherwise, the
execution of R is considered erroneous.

2. Triple Redundancy Directive: R will be executed thrice, applied to the same input and without any
intermediate computations affecting the results of these executions.

If at least two executions of R encounter an error before terminating, then the execution of R is
considered erroneous, and a recovery action is taken upon the first detection of such an error.

If at least two executions terminate without error, and the values of all decision variables after termi-
nation are identical for both executions, then the execution of R is considered error-free. Otherwise,
the execution of R is considered erroneous.

4 Assertions

4.1 Syntax

1. assertion→ assert-clause [assertion-target] [error-handler]

2. assert-clause→ “ assert (” predicate-list “)”

3. predicate→ status-predicate | invariant

4. status-predicate→ precondition | postcondition

5. precondition→ “ pre (” boolean-expression “)”

6. postcondition→ “ post (” boolean-expression “)”

7. invariant→ boolean-expression

8. assertion-target→ aggregate-region

4.2 Overview

The specification of an assertion consists of up to three components: (1) a mandatory assert clause, (2) an
optional assertion target, and (3) an optional error handler.

An assert clause contains between one and three predicates, including at most one precondition, one
postcondition, and one invariant. If an error handler is provided for an assertion, it applies to all its predi-
cates.

12

4.3 Assert Clauses

An assert clause consists of the keyword assert followed by a parenthesized list of predicates, which are
propositional logic expressions over data. Depending on how a predicate is used, we distinguish between
status predicates and invariants. A status predicate is associated with single point regions; it can be either a
precondition or a postcondition and must be satisfied respectively at the pre-execution or the post-execution
points of these regions (see Section 2). An invariant can be associated with either data regions—and called
a data invariant in this case—or with composite regions—and called a program invariant.

The core component of a predicate is a boolean expression (which in some cases may be tweaked due to
special context requirements). We call this expression an assertion expression. It may contain pure functions
and must be side-effect free.

Let E denote the an assertion expression, and let a predicate application location (PAL) be any location
in the program, where E can be legally applied during execution within the assertion’s lifetime. For all
identifiers referenced in the assertion—including identifiers in E, region identifiers, and any identifiers
referenced in an error handler—the links to their defining occurrences are established at the point of the
assertion’s defining occurrence. If loc is an arbitrary PAL, then all these links must be defined at loc, and the
value of E is computed using the values of its identifiers at this location. If that evaluation yields true , the
predicate is said to be satisfied at loc, otherwise it is said to be violated at loc, resulting in an error of class
predicate violation . If any of the variable links in E is undefined at loc, or if a variable reference yields a
corrupted value, then the application of the predicate in this location is undefined and the expression cannot
be properly evaluated, resulting in an error. This class of error is a special case of a predicate violation .

4.4 Rules for the Association Between Predicates, Regions, and Error Handlers

The association between predicates, associated regions, and error handlers is subject to the following rules:

1. Status Predicates: An assertion specifying a status predicate can only be associated with an aggregate
single-point region and a basic error handler.

For any single-point region, at most one precondition and at most one postcondition can be specified.

2. Data Invariants: An assertion specifying a data invariant can only be associated with an aggregate
data region. It can be combined with standard error recovery.

Any data region can be associated with at most one data invariant.

3. Program Invariants: An assertion specifying a program invariant can only be associated with an
aggregate program region. It can be combined with a composite region error recovery.

Any composite region can be associated with at most one precondition, at most one postcondition,
and at most one program invariant.

Multiple predicates for one assertion target can be specified in one or more assertions. Splitting a
multiple-predicate assertion into separate assertions allows the violation of different predicates to be recov-
ered by different error handlers.

13

4.5 Built-In Predicates for Error Detection

4.5.1 Check Predicate

Consider an invariant, assert (E), associated with a variable, v. If nothing else is said, the system—i.e.,
the compiler and runtime system—is responsible for validating the invariant throughout the lifetime of the
assertion. Depending on the context in which the assertion is used, this may result in a significant runtime
overhead. AL provides a way to explicitly specify at which points during program execution the assertion
expression needs to be evaluated via a built-in function check predicate (v), whose invocation results in the
evaluation of E. This function can be used in a status predicate as shown in the example below:

atype v assert (E) no check ;
...
S: v=g(x,y,z) assert (post (check predicate (v))) error (h(...);

The above declaration defines an invariant assertion, assert (E), that is contextually associated with the
declaration of variable v. The keyword no check attached to this assertion is meant to suppress its automatic
validation by the system.

The status predicate associated with statement S uses the built-in function check predicate (v) as a
postcondition. This function is invoked immediately after the completion of the assignment v = g(x, y, z);
it results in the evaluation of the boolean expression E at that point.

Note that since AL requires at most one invariant to be associated with a data region, the reference to v
in the status predicate determines this invariant unambiguously.

4.5.2 Check Tolerance

A similar function is provided for the explicit validation of a tolerance expression associated with a variable,
v (see Section /reftolerance). It is invoked in the form

check tolerance (v)

and yields true iff the tolerance expression for v is satisfied.

4.5.3 Check Error

An invocation of the built-in predicate check error (c), where c denotes an error class, results in a value of
true iff at the time of execution an error of class c has been detected by the system.

4.6 Examples

Status Predicate: Example 1

x=f0(y) assert (post (x < U)) error (h1(x,y,U));
L1: z=g(x);
...

14

This example shows an assertion associated by context with the single-point region defined by the assign-
ment statement x = f0(y). The assertion specifies a postcondition, i.e., the assertion expression x < U
needs to be evaluated immediately after the execution of the assignment x = f0(y), and before the state-
ment z = g(x) at label L1 is executed. In the case that the assertion fails, the basic error handler h1(x,y,U)
is activated.
If L1 is the target of a control transfer, the above assertion may or may not be satisfied when control is
transferred to L1 from an outside location. In order to assure that the assertion is always satisfied before
execution of the statement labeled by L1, in whatever way this statement is reached, the assertion would
have to be formulated as a precondition for that statement, as shown below:

x=f0(y);
L1: z=g(x) assert (pre (x < U)) error (h1(x,y,U));
...

The above program could also be formulated by using an explicit association:

x=f0(y);
L1: z=g(x);
...
assert (pre (x < U)) error (h1(x,y,U)) in (L1);

Status Predicate: Example 2

float function f1(float x,y,z);
{... };

...
assert (pre (p(a,b,c)), post (q(v,...))) in (L2);
...
L2: v=f1(a,b,c);

In this example, two status predicates – a precondition as well as a postcondition – are explicitly associated
with the single point region identified by the label L2.

Now consider a slightly more general example by explicitly associating a postcondition, u, with the
function, f1. This postcondition applies to all invocations of f1, and therefore specifically to its invocation
within the assignment at label L2:

float function f1(float x,y,z); assert (post (u(...)));
{...};
...

assert (pre (p(a,b,c)), post (q(v,...))) in (L2);
...
L2: v=f1(a,b,c);

Now the postcondition u(...) will be evaluated immediately after completion of the invocation f1(a, b, c).
Following that, after execution of the assignment to v, the postcondition for the call, q(v, ...), will be evalu-
ated.

15

Status Predicate: Example 3

assert (post (A(i)≤ B(i))) error (h3(i,A(i),B(i))) in (LL);
...
LL: CALL MPI RECV(A(i),1,MPI REAL,myrank+1,...);

Here a status predicate is associated explicitly with the statement identified by the label LL, which is an MPI
library call that receives the value of A(i). The expression A(i) ≤ B(i) is a postcondition that must be
satisfied immediately after the execution of that statement. For the case that it fails the error handler h3(...)
will be activated.

Status Predicate: Example 4

BB1: region
{ /* basic block statement sequence */ };
...
assert (post ((v1 ≤ upb) ∧ (v2 ≥ lwb) ∧ (v2 ≤ v1))) in (BB1);

Here, the assertion expression (v1 ≤ upb) ∧ (v2 ≥ lwb) ∧ (v2 ≤ v1) serves as a postcondition for the
execution of the assertion region labeled by BB1.

Status Predicate: Example 5

LOOP1: while cexpr
{

/* basic block statement sequence */
assert (post (x ≤ y)) error (...);
}

In this example, the postcondition x ≤ y is textually associated with the last statement of the while loop’s
body. It will be evaluated every time the body of the while loop is executed, immediately after the execution
of the last statement in the body. As a consequence, this expression represents an invariant that must be
satisfied after each iteration of the loop, and after its termination. Note, however that this predicate need not
be satisfied within the loop body.

Status Predicate: Example 6

L1: x=g(y);
...
assert (pre (p1(x))) error (...) in (L1);
...
assert (pre (p2(y))) error (...); in (L1) /* ILLEGAL */

This is illegal, since no two preconditions can be associated with a single program region (see Section 4.4).

16

Invariant: Example 1

R: region assert (x ≤ y)
{ while cexpr
{
/* basic block statement sequence */
}
}

The difference between this example and Status Predicate Example 5 is that here the while loop has been
enclosed in an assertion region, R, and that the post condition for the last statement has been replaced by an
invariant that needs to be satisfied throughout the region.

Invariant: Example 2

class cyclic buffer
{ int n;

double B(n);
int c cycles, p cycles;
...
}
assert ((c cycles ≤ p cycles) ∧ (p cycles ≤ c cycles + n)) error (sync error handler(...));

The assertion in this example specifies an invariant contextually associated with the class cyclic buffer. Its
lifetime is the union of lifetimes of objects that are instantiations of cyclic buffer. The invariant expresses a
standard constraint for producer and consumer processes operating asynchronously on a cyclic buffer, B(n),
where n is the size of the buffer and c cycles and p cycles respectively represent the number of cycles the
consumer and producer have already executed.

Assume now that statement S below has updated c cycles, as a consequence of consuming an item
from the buffer. Then the postcondition associated with S performs an explicit check of the invariant for
cyclic buffer defined above:

S: new item = consume an item(...) assert (post (check predicate (cyclic buffer))) error (h(...));

The basic error handler h(...) is activated if the post condition for statement S is violated. This overrides
the error handler, sync error handler(...), provided for the invariant in the context of the class declaration.

Invariant: Example 3

int ncycles; assert (0 ≤ ncycles ≤ maxcycles);

17

Here we use a contextual association for the specification of an invariant for the variable ncycles that ex-
presses bounds for its values that must be respected throughout the lifetime of the variable. This could be
rewritten using an explicit association:

int ncycles;
...

assert (0 ≤ ncycles ≤ maxcycles) in (ncyles);

Below we modify this example by limiting the lifetime of the invariant to the time program execution
resides in the composite regions R1 and R2:

int ncycles;
...

assert (0 ≤ ncycles ≤ maxcycles) in (ncycles) restricted to (R1,R2);

Invariant: Example 4

int ncycles, mcycles assert (0 ≤ allvars ≤ maxcycles);

This is similar to the previous example, except for the fact that the invariant is now valid for both of the
variables mentioned in the declaration, i.e., ncycles as well as mcycles, due to the use of the quantifier
allvars .

Invariant: Example 5

int i, j, k;
...
int * ip; assert ((range(ip) = (&i,&k)) ∧ (lwb ≤ ∗ip ≤ upb))

The integer pointer variable ip is restricted to point to the variables i and k; in addition, the values of the
variables pointed to by ip must always lie between the bounds lwb and upb.

Invariant: Example 6

float function f1(float x,y,z);
error (numerical → hw1(...);

SECDED → hw2(...);
else hw3(...))

repeat (k);
assert (w(...));
assert (post (u(...))) error (hu(...));
{...};

18

...
assert (pre (p(a,b,c)), post (q(v,...))) in (L2);
...
L2: v=f1(a,b,c);

This is an extension of the second version of Status Predicate Example 2. Everything that has been said
there is still valid. In addition, an error handler and an invariant, w(...), have been associated with the
function. This means that throughout any invocation of the function, w(...) needs to be satisfied. If, during
an invocation, an error of class numerical or SECDED occurs, the error handlers hw1(...) or hw2(...) are
respectively activated. If an error of any other class occurs, error handler hw3(...) is activated. If such an
recovery action is unsuccessful, the function activation is repeated up to k ≥ 1 times (see Section 3).

5 Tolerance Directives

5.1 Syntax

1. tolerance-directive→ tolerance-clause [tolerance-target] [standard-error-recovery]

2. tolerance-clause→ variable-tolerance-clause | global-tolerance-constraint

3. variable-tolerance-clause→ error-tolerance-clause | tolerant-memory-clause

4. error-tolerance-clause→ “ tolerate (” tolerance-expression “)”

5. tolerance-expression→ boolean-violation-permit-expression

6. violation-permit→ “(” threshold “,” error-class “)”

7. threshold→ integer-expression | “ accumulated (” integer-expression “)” | “ access percentage (” number-
of-variable-accesses, error-percentage “)” | all

8. number-of-variable-accesses→ integer-expression

9. error-percentage→ floating-point-expression

10. tolerant-memory-clause→ “ tolerant memory (” integer-expression “)”

11. tolerance-target→ variable-tolerance-target | global-constraint-tolerance-target

12. variable-tolerance-target→ aggregate-data-region

13. global-constraint-tolerance-target→ aggregate-data-region | aggregate-program-region

14. global-tolerance-constraint→ “ constrain tolerance (” boolean-expression “)”

19

5.2 Overview

A tolerance directive instructs the system to ignore certain errors that occur during the manipulation of
data. Its specification contains up to three components: (1) a mandatory tolerance clause, (2) an optional
tolerance target, and (3) an optional standard error recovery.

A tolerance clause is either a variable tolerance clause or a global tolerance constraint. The target of a
variable tolerance clause is an aggregate data region, and the tolerance clause in this case expresses the error
permissions for the data objects belonging to that region. A global tolerance constraint can be associated
with an aggregate data region or an aggregate program region; it specifies a constraint over a set of variable
tolerance clauses in that region.

If, during execution in its target region, the condition expressed in a tolerance clause is violated, an error
of type tolerance violation is raised. An explicit check for the validity of a tolerance clause can be expressed
via the built in function check tolerance (v) (see Section 4.5).

5.3 Variable Tolerance Clauses

We distinguish two different types of variable tolerance clauses: first, an error tolerance clause lists specific
error classes that should be tolerated, together with a threshold limiting the number of permitted violations.
Secondly, a tolerant memory clause directs the compiler to allocate “tolerant memory” for the associated
data objects. It results in the suppression of a limited number of memory errors.

5.3.1 Error Tolerance Clause

An error tolerance clause consists of the keyword tolerate , followed by a parenthesized tolerance expres-
sion, which is a boolean expression formulating a logical condition over violation permits. Each violation
permit consists of an error class together with a threshold; it determines a boolean value as explained below.

Assume that the error tolerance clause in consideration is associated with variables v1,...vn, where n ≥ 1,
and (t, c) is a violation permit, where t is a threshold, and c an error class. Depending on t, the meaning of
the violation permit (t, c) is defined as follows:

1. t is an integer expression
In this case, the value of t must be≥ 0 and the violation permit is satisfied iff for each of the variables
vi, 1 ≤ i ≤ n, there are at most t occurrences of error class c. If t = 0, then the effect of the violation
permit is the same as if it was absent, i.e., any occurrence of an error of class c in any of the variables
results in an error.

2. t = accumulated (t′)
Here, t′ is an integer expression with a value ≥ 0. The violation permit is satisfied iff the number of
occurrences of error class c, accumulated over all of the variables vi, 1 ≤ i ≤ n, is at most t′.

3. t = access percentage (k, r)
Here, k is an integer expression with a (usually large) positive value, and r is an expression yielding
a floating point number in the range 0 ≤ r ≤ 100. The violation permit is satisfied iff for each of the
variables vi, 1 ≤ i ≤ n, and for any k subsequent accesses to that variable at most rk/100 errors of
class c occur.

20

4. t = all
In this case, there is no limit to occurrences of error class c in any of the vi, 1 ≤ i ≤ n: the violation
permit is always satisfied, independent of how many errors of that type occur.

5.3.2 Examples for the Error Tolerance Clause

Error Tolerance Clause: Example 1

float A, B, C; tolerate ((n1, Inf) ∧ (n2, NaN));
float D; tolerate ((n3, SECDED));
float E, F; tolerate ((accumulated (n4), ANY));
float *ip1; tolerate ((access percentage (1000,2), SECDED));
float G; tolerate ((all , ANY));

Here, let n1, n2, n3, and n4 denote integer expressions, all yielding values ≥ 0. The error tolerance clauses
specified above have the following meaning:

• During the manipulation of the floating point variables A, B, and C n1 Inf and n2 NaN errors are
tolerated for each of these variables. No other errors are tolerated.

• The manipulation of the floating point variable D permits n3 SECDED errors. No other errors are
tolerated.

• The manipulation of variables E and F tolerates an accumulation of at most n4 arbitrary errors in both
variables together, i.e., the number of errors occurring during the manipulation of D plus the number
of errors occurring during the manipulation of F must not exceed n4.

• The manipulation of the floating point values of variables pointed to by ip1 tolerates at most 2%
SECDED errors for any 1000 successive accesses to these variables.

• The tolerance for variable G is the most encompassing: all errors of any type that occur during ma-
nipulation of G are tolerated.

Error Tolerance Clause: Example 2

float A, B, C;
float D;
...
tolerate ((n1, Inf) ∧ (n2, NaN)) in (A, B, C);
tolerate ((n3, SECDED)) in (D);

The semantics of this example are the same as for the first two lines in the previous one. The difference is
in the syntax, which allows for the separation of declarations and the associated error tolerance clauses.

21

Error Tolerance Clause: Example 3

float H;
...
tolerate ((all , Inf)) in (H) restricted to (f1);
...
float function f1(...) { /* function body */ };

Here, the tolerance directive associated with variable H is imposed during program execution in each invo-
cation of function f1, and is not in effect elsewhere. All occurrences of Inf errors are tolerated.

Error Tolerance Clause: Example 4 – Numerical Representation Errors

float J tolerate ((n1, mantissa [7:0]));
int K tolerate ((n2, bits [31:16]));

Let n1 and n2 denote integer expressions with values ≥ 0. The manipulation of the floating point variable
J tolerates n1 errors in the least significant 8 bits of the mantissa. No other errors are permitted.

The manipulation of the integer variable K tolerates n2 errors in the upper 2 bytes of its representation.
No other errors are permitted.

Error Tolerance Clause: Example 5 - Standard Error Recovery in a Data Region

float A tolerate ((n1, NaN) ∧ ((n2, Inf) ∧ (n3, SECDED))
error (NaN → NaN violation handler(n1,...);

Inf → Inf violation handler(n2,...);
SECDED → secded error handler(n3,...);
else other handler(error-class,...));

Here, let n1, n2, and n3 denote integer expressions, all yielding values≥ 0. The tolerance directive specified
above has the following meaning: During the manipulation of the floating point variable A, n1 NaN arith-
metic errors, n2 Inf arithmetic errors, and n3 SECDED errors are tolerated. No other errors are tolerated.

Two types of errors can occur in this constellation: first, there may be errors that are not listed in the
violation permit, i.e., errors different from NaN , Inf , and SECDED . These are called non-tolerated errors.
Secondly, there may occur more NaN , Inf , and/or SECDED errors than are tolerated by the directive. Error
handling is able to distinguish these cases and treat them separately as follows:

• The occurrence of more than n1 NaN errors is handled by the NaN violation handler.

• The occurrence of more than n2 Inf errors is handled by the Inf violation handler.

• The occurrence of more than n3 SECDED errors is handled by the secded error handler.

• The occurrence of any other error results in the activation of error handler other handler(error-
class,...).

Note that the semantics of the error clause is slightly different from that discussed in Section 3 in that a
tolerated error is treated in the same way as no error.

22

Error Tolerance Clause Example 6 - Multiple Error Handlers for Multiple Variables

float D,E; tolerate ((accumulated (n4), numerical error))
error (numerical error → numerical error handler(accumulated ,n4,D,nD,E,nE,...);

else other handler(error-class,...));

Let n4 denote an integer expression yielding a value≥ 0. The tolerance directive has the following meaning:
The manipulation of the variables D and E tolerates an accumulation of at most n4 numerical NaN

errors in both variables together, i.e., the number of such errors occurring during the manipulation of D
plus the number of errors occurring during the manipulation of E must not exceed n4. In the case this
limit is violated, the numerical error handler is activated. Its arguments include the limit, n4, and each
affected variable—D,E—together with the number of error occurrences caused by that variable—nD and
nE respectively. As before, the occurrence of any other, i.e., non-tolerated, error triggers the activation of
nte handler.

5.3.3 Tolerant Memory Clause

A tolerant memory clause consists of the keyword tolerant memory followed by an integer expression,
which must yield a positive value, t.

This directive specifies that memory for the associated data objects is to be allocated in an error-tolerant
memory region. Such a region is subject to a special set of rules: the operating system keeps track of
uncorrectable errors during execution in this region, but takes no further action as long as the number of
errors does not exceed t.

The allocation of data objects in an error-tolerant memory region can be performed in the C program-
ming language by calling a special version of the malloc routine.

5.3.4 Example for Tolerant Memory Clause

atype A; tolerant memory (t)
...
A = tolerant malloc(sizeof(atype));

Variable A is declared of type atype . The associated directive specifies A to be allocated in an error-
tolerant memory region, with a threshold of maximum t errors to be tolerated. The call to the special routine
tolerant malloc performs the requested allocation.

5.4 Global Tolerance Directives

The features provided by variable tolerance directives do not offer an easy way to specify a logical condition
involving multiple such directives. This can be achieved via a global tolerance constraint. We illustrate
the use of such a constraint with an example:

HPC Sparse Matrix * A;
float * x, *y;
...

23

tolerate ((1,SECDED)) in (*A, *x, *y);
...
constrain tolerance (*A xor *x xor *y)

In this example, an identical variable tolerance clause is specified for the values pointed to by A, x, and
y. The global tolerance constraint imposes an additional restriction in that it allows a SECDED error only
to occur for at most one of these variables (xor represents the exclusive or operator).

6 Pragmas

6.1 Syntax

1. pragma→ pragma-clause [pragma-target] [standard-error-recovery]

2. pragma-clause→ voltage-clause | other-pragma-clause

3. voltage-clause→ “ voltage options (”voltage-variable “,” probability-specification-list “)”

4. probability-specification → undetected-error-probability-specification | detected-error-probability-
specification | any-error-probability-specification

5. undetected-error-probability-specification→ “ p undetected errors =”expression;

6. detected-error-probability-specification→ “ p detected errors =”expression;

7. any-error-probability-specification→ “ p errors =”expression;

8. pragma-target→ aggregate-data-region | aggregate-program-region

6.2 Overview

The main purpose for introducing pragmas in this document is as a placeholder for future extensions of the
language. In this version of AL, our only focus is on a special class of pragmas that support control of the
tradeoff between energy and reliability.

The connection between energy efficiency and reliability can be exploited at a hierarchy of architecture
and software levels. In essentially every computer in production today, a logic circuit can be designed for
the control of power consumption and measured for error rate. Managing this tradeoff should be possible
when new devices intended to extend Moore’s Law are perfected. The power supply to these devices could
be generated by a Digital to Analog Converter (DAC). By changing the power supply voltage, the speed,
power, and error rate of devices could be changed in nanoseconds. It would be possible to build a computer
where such changes could be applied to composite program regions under program control thus leading to
algorithms that would be able to control the tradeoff between reliability, energy efficiency, and performance,
and to more closely approach energy efficiency limits.

Pragmas are specified using a structure similar to that used for assertions and tolerance directives, as
discussed in Sections 4 and 5. Their specification consists of up to three components: (1) a mandatory
pragma clause, (2) an optional pragma target, and (3) an optional standard error recovery. In general, a
pragma target can be either an aggregate data region or an aggregate program region. In both cases, a
standard error recovery can be combined with the construct.

24

6.3 Voltage Pragmas

Voltage pragmas are associated with aggregate program regions. They provide information about the rela-
tionship between the voltage at which a composite region is executed and the resulting probability of error
occurrences during that execution. Based on this information the compiler and/or runtime system can select
a mode of operation that depends on the error-handling capabilities specified for this region, and on the
environment in which it is executed. For example, in the presence of an elaborate error-recovery capability
associated with a function, the system may decide to execute the function at a low voltage, saving energy but
accepting the risk of a high number of error occurrences. On the other hand, if an inadequate error response
has been provided for the function, the system may choose to executing it at a voltage that minimizes the
risk of voltage-induced error.

In general, a voltage clause has the form

voltage options (v, probability specification-list)

where v identifies a voltage variable, and the probability specification-list may contain the following ele-
ments:

1. An undetected error probability specification of the form:

p undetected errors =pu(v)

where pu(v) is an expression specifying the probability for undetected errors resulting from an exe-
cution at voltage v.

2. A detected error probability specification of the form:

p detected errors =pd(v)

where pd(v) is an expression specifying the probability for detected errors resulting from an execution
at voltage v.

3. An any error probability specification of the form:

p errors =pe(v)

where pe(v) is an expression specifying the probability for any errors resulting from an execution at
voltage v.

The probability specification list may consist of exactly one of the above three options, or of a combina-
tion of the first two options.

25

6.4 Examples for Voltage Pragmas

Voltage Pragmas: Example 1

float function f(float x,...)
voltage options (v, p undetected errors =p1(v),

p detected errors =p2(v));
error (c1 → h1(...); ..., cn → hn(...));
{...};

In this example, the pragma voltage options (...) is contextually associated with the declaration of function
f . The probabilities for undetected as well as detected errors are respectively specified as p1(v) and p2(v)
depending on the voltage, v, chosen for an execution of the function. Furthermore, error handlers h1, ...hn
for error classes c1, ...cn are associated with the function.

Voltage Pragmas: Example 2

Here we consider a situation where a function is embedded in a hierarchical program structure and may be
executed at different voltages depending on circumstances in its environment. Function arguments in this
example are respectively characterized as input, input/output, or output by the qualifiers in , inout , and out .

float function g(float in x,...)
voltage options (v, p undetected errors =p3(v),

p detected errors =p4(v));
{...};

Function g has a floating point input argument, x, and delivers a value of type float . The voltage pragma
provided for the function specifies respective error probabilities p3(v) and p4(v) for undetected and detected
errors, depending on the operating voltage at which an invocation of g is executed.

Assume now that g1 is a function with input/output argument x that calls g, but does not have any
error-handling capabilities associated with its definition:

function g1(float inout x) {x=g(x)};
...
g1(A);
...

The invocation g1(A) leads to a call of g(A), with its result assigned to variable A if the execution is
successful. However, the value of A may be corrupted in the case of an error occurring during the execution
of g(A), possibly in addition to the corruption of other data. A compiler or runtime analysis of the environ-
ment in which g1(A) is called may determine that such an error is unrecoverable. In this case, the system
may decide to execute this call at a high voltage to meet reliability requirements.

On the other hand let function g2 be defined as follows:

26

function g2(float out x, in y) error (h1(...)) repeat (k, finally (h2(...))) save (B,C,D);
{x=g(y)};
...
t=A;
g2(A,t);
...

In contrast to g1 above, the definition of function g2 with output argument x and input argument y has
associated with it an explicit error handling specification: in the occurrence of an error, error handler h1(...)
is called first, and the function is executed repeatedly up to k times if h1(...) cannot successfully handle the
error. If, after k repeated executions, errors still occur, error handler h2(...) is activated. The save directive
directs the system to save the values of variables B,C,D before the initial invocation of g2(A, t); the
original values of these variables are restored before each repeated execution caused by an error occurrence.

The system may at the beginning choose to execute g2 at a low voltage, but increase the voltage for
repeated executions. However, lowering the voltage initially too far could cause so many retries that the
total power consumption actually increases. This could lead to a system strategy for optimizing the voltage
initially chosen for minimum energy consumption.

7 Conclusion

We conclude this document by discussing a number of ideas on extending the present specification of the
assertion language in Section 7.1, followed by addressing some inherent semantic limitations of the language
in Section 7.2.

7.1 Potential Future Extensions of the Assertion Language

There are some obvious areas where the present AL specification can be refined and/or generalized without
affecting its basic structure and concepts. They include:

• Dynamic management of assertion language constructs

• Extension of tolerance directives by approximate types

• Extended support for error recovery

• Introduction of additional pragma categories

• Definition and management of user-defined error classes

• More precise classifications of data and program regions

It is expected that such changes will be implemented as a result of receiving feedback from compilation
of the language and from its application to critical application. The first two of these potential extensions will
be respectively discussed in Sections 7.1.1 and 7.1.2. A much further-reaching extension—the introduction
of support for parallel computations—will be outlined in Section 7.1.3.

27

7.1.1 Dynamic Management of Assertion Language Constructs

The discussion in this document assumed that an assertion language construct appearing in a source program
was always active. However, compiler and/or runtime analysis may result in the desirability to dynamically
manage such constructs, e.g., by turning them off and on depending on the results of analysis. Knobs, as
proposed by Bernholdt et al. generalize such boolean guards [2]. They are mechanisms that can control the
cost, in terms of performance and energy, associated with the execution of assertion language constructs.
For example, they allow flexible control of the strength of error detectors such as checksum procedures and
the frequency of their activation.

7.1.2 Approximate Types

The semantics of most common programming languages specifies in detail the mathematical properties to be
obeyed by the representation and processing of numerical types. Tolerance directives, as defined in Section 5
of this document, support some relaxation of these strict rules. A different approach for the manipulation
of numerical values could follow the concept of approximate types as proposed in the EnerJ language [11].
Approximate types provide flexibility for value representation and operation implementation, with imple-
mentation details remaining system and application dependent. The underlying idea is to suppress certain
numerical errors, in addition to providing the implementation with the opportunity for achieving potentially
higher performance and reduced energy consumption by exploiting the weakened requirements for repre-
sentations and operations. The introduction of approximate types leads to a separation of computations that
must be executed in a mathematically precise fashion from approximate computations. If approximate type
computations are mixed with precise type computations, care must be taken not to destroy the hard correct-
ness of precise type computations. Specifically, the assignment of the value of an approximate type variable
to a precise-type variable needs special consideration.

7.1.3 Assertion Language Support for Parallelism

The current AL specification is based upon a sequential programming model. In view of the massive paral-
lelism characterizing exascale computations the scope of AL’s applicability could be significantly enhanced
by introducing support for parallel computations. For example, new AL constructs could support fault tol-
erance for synchronous and asynchronous parallelism such as forall loops, parallel thread scheduling, and
associated synchronization features. Error control would have to be generalized to deal with errors in these
new constructs, and at the same time include parallelism in its recovery routines. Predicates could take
into account the distribution of large data structures across different memories, addressing related consis-
tency issues and the resulting balance of computations. Tolerance directives could address specific errors in
parallel computations that could be ignored without affecting the (soft) correctness of computations. And
pragmas could be generalized to control the degree of parallelism of a construct depending on the tradeoff
between gain in computational performance and the overhead of synchronization and communication. Such
generalizations would result in a major generalization of AL, which we believe could be made without a
breakdown of the basic structure of AL as specified at this time.

7.2 On the Semantic Limits of the Assertion Language and Its Implementation

Assertions provide the means to formulate an error detector along the lines of Huang-Abraham’s Algorithm-
Based Fault Tolerance (ABFT) approach [5]. For example, a call to a checksum computation can be ex-

28

pressed with a status predicate attached to a single-point region. However, AL is not designed to handle
error detection capabilities that exploit deep semantic properties of the algorithm and its data structures.
Such features must be explicitly included by the programmer in the algorithm and the related data structure
declarations.

We illustrate these relationships with an example for a code section, which performs a fault-tolerant
computation of the product y = A ∗ x for matrix A and vector x:

/* Original data structures are dimensioned A(1 : m, 1 : n), x(1 : n), y(1 : m) */
/* Declaration of extended data structures: */
float AA(1:m+1,1:n); /* Row AA(m + 1, 1 : n) is added to the original data structure */
float xx(1:n+1); /* Element xx(n + 1) is added to the original input vector */
float yy(1:m+1); /* Element yy(m + 1) is added to the original result vector */
· · ·
/* Assume AA(i, j) to be defined for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and xx(j) for 1 ≤ j ≤ n */
/* AA(m + 1, j) is now computed as AA(m + 1, j) = Σi=1:m(A(i, j)) for all j, 1 ≤ j ≤ n */
/* xx(n + 1) is computed as xx(n + 1) = Σj=1:n(x(j)) */
· · ·
/* compute the matrix-vector product: yy(1 : m) := AA(1 : m, 1 : n) ∗ xx(1 : n) */
/* compute yy(m + 1) := AA(m + 1) ∗ xx(1 : n) */
assert (post (yy(m + 1) = Σi=1:m(yy(i)))) error (checksum error handler(AA, xx, yy));
· · ·

In the case that the postcondition for the last statement fails, the checksum error handler(...) will be
activated and given the task to perform recovery from that error. However, we do not assume that the system
in which the implementation of AL is embedded has sufficient knowledge about the algorithmic and data
structure semantics to deal with this problem successfully on its own. That is, any information required for
the analysis of and recovery from such an error must be explicitly provided in the error handler.

References

[1] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. Fundamental Concepts of Dependability.
Technical report, UCLA, 2000. CSD Report No. 010028.

[2] David E. Bernholdt, Wael R. Elwasif, Christos Kartsaklis, Seyong Lee, and Tiffany M. Mintz.
Programmer-Guided Reliability and Trade-Offs with Energy and Performance. Slides presented at
ACI PI Meeting, Baltimore, MD, February 2014.

[3] Patrick G. Bridges, Kurt B. Ferrera, Michael A. Heroux, and Mark Hoemmen. Fault-Tolerant Iterative
Methods via Selective Reliability. Technical report, Sandia national laboratories, June 2012.

[4] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the ACM,
12(10):576–583, October 1969.

[5] K.H. Huang and J.A. Abraham. Algorithm-Based Fault Tolerance for Matrix Operations. IEEE Trans-
actions on Computers, C-33:518–528, June 1984.

29

[6] Mark L. James and Lydia P. Dubon. An Autonomous Diagnostic and Prognostic Monitoring System
for NASA’s Deep Space Network. In Proceedings 2001 IEEE Aerospace Conference, March 2001.

[7] Xuanhua Li and Donald Yeung. Application-level correctness and its impact on fault tolerance. In In
Proceedings of the 13th International Symposium on High Performance Computer Architecture, pages
181–192, 2007.

[8] Bertrand Meyer. Design by Contract. In Advances in Object-Oriented Software Engineering, pages
1–50. Prentice Hall, 1991.

[9] Microsoft. Code Contracts. http://research.microsoft.com/en-us/projects/contracts.

[10] Oracle Software Downloads. Programming With Assertions.
http://docs.oracle.com/javase/1.4.2/docs/guide/lang/assert.html, 2002.

[11] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Gross-
man. Enerj: Approximate data types for safe and general low-power computation. In Proceedings of
the 32Nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’11, pages 164–174, New York, NY, USA, 2011. ACM.

[12] Lotfi A. Zadeh. Fuzzy logic, neural networks, and soft computing. Commun. ACM, 37(3):77–84,
March 1994.

30

Application Source Code
Annotated with Assertions

Compiler
(ROSE)

Introspection
Framework for
Resilience (IFR)

Operating
System

Adaptive
Application
Executable

Knowledge/
Experience

Database (KEX)
Vendor

Compilers
LLVM

Developer

Exascale Hardware

Knowledge
 about:

• Application Domain
• System Properties
• Strategic Goals
• Execution Behavior

• Monitoring
• Analysis
• Recovery/
 Optimization
 Feedback
• Prediction

Figure 1: FailSafe System Overview

31

